FULL PUBLICATION LIST – AVI SHPORER

Last updated: February 9, 2021

Refereed Publications

“TOI-811b and TOI-852b: New transiting brown dwarfs with similar masses and very different radii and ages from the TESS mission”.
AJ, 161, 97.

201. Gan, T., et al., 2021
“An inconvenient entanglement: Revisiting the HD 21749 planetary system with stellar activity modeling”.

200. Daylan, T., et al., 2021
“TESS discovery of a super-Earth and three sub-Neptunes hosted by the bright, Sun-like star HD 108236”.
AJ, 161, 85.

199. Sha, L., Huang, C., Shporer, A., et al., 2021
“TOI-964 b and K2-329 b: short-period Saturn-mass planets that test whether irradiation leads to inflation”.
AJ, 161, 82.

198. Parviainen, H., et al., 2021
“TOI-519 b: a short-period substellar object around an M dwarf validated using multi colour photometry and phase curve analysis”.

197. Bryson, S., et al., 2021
“The occurrence of rocky habitable zone planets around solar-like stars from Kepler data”.
AJ, 161, 36.

196. Giacalone, S., et al., 2021
“Vetting of 384 TESS objects of interest with TRICERATOPS and statistical validation of 12 planet candidates”.

195. Schlecker, M., et al., 2020
“A highly eccentric warm Jupiter orbiting TIC 237913194”.

194. Brahm, R., et al., 2020
“TOI-481 b & TOI-892 b: Two long-period hot Jupiters from the Transiting Exoplanet Survey Satellite”.

“The TESS phase curve of KELT-1b suggests a high dayside albedo”.
AJ, 160, 211.

192. Wong, I., Shporer, A., et al., 2020
“Systematic phase curve study of known transiting systems from Year 1 of the TESS Mission”.

191. Mireles, I., Shporer, A., et al., 2020
“TOI 694 b and TIC 220568520 b: Two low-mass companions near the Hydrogen burning mass limit orbiting Sun-like stars”.
190. Badenas-Agusti, M., et al., 2020

189. Teske, J., et al., 2020

188. Wong, I., Shporer, A., et al., 2020

187. Carmichael, T., et al., 2020

186. Nielsen, L., et al., 2020

185. Gan, T., Shporer, A., et al., 2020

184. Astudillo-Defru, N., et al., 2020

183. Huang, C., et al., 2020

“TOI-677 b: A Warm Jupiter (P = 11.2 days) on an eccentric orbit transiting a late F-type star”. AJ, 159, 145

179. Shporer, A., et al., 2020

177. Wong, I., Shporer, A., et al., 2020
176. Yee, S., et al., 2020
“The Orbit of WASP-12b is Decaying”.

175. Petigura, E., et al., 2020
“K2-19b and c are in a 3:2 commensurability but out of resonance: a challenge to planet assembly by convergent migration”.
AJ, 159, 2.

174. Guo, Z., Fuller, J., Shporer, A., 2019
“KIC 4142768: An evolved Gamma Doradus/Delta Scuti hybrid pulsating eclipsing binary with tidally excited oscillations”.

“TOI-150b and TOI-163b: two transiting hot Jupiters, one eccentric and one inflated, revealed by TESS near and at the edge of the JWST CVZ”.

172. Quinn, S., et al., 2019
“Near-resonance in a system of sub-Neptunes from TESS”.
AJ, 158, 177.

171. Dholakia, S., et al., 2019
“A substellar companion to a hot star in K2’s Campaign 0 field”.
PASP, 131, 4402.

170. Zhou, G., et al., 2019
“Two new HATNet hot Jupiters around A stars, and the first glimpse at the occurrence rate of hot Jupiters from TESS”.
AJ, 158, 141.

169. Vanderburg, A., et al., 2019
“TESS spots a compact system of super-Earths around the naked-eye Star HR 858”.

168. Guenther, M., et al., 2019
“A Super-Earth and two sub-Neptunes transiting the bright, nearby, and quiet M-dwarf TOI-270”.
Nature Astronomy, tmp, 409.

167. Yahalomi, D., et al., 2019

166. Dawson, R., et al., 2019
“TOI-216: Two warm, large exoplanets in or slightly wide of the 2:1 orbital resonance”.
AJ, 158, 65.

165. Kostov, V., et al., 2019
AJ, 158, 32.

164. Shporer, A., et al., 2019
“TESS full orbital phase curve of the WASP-18b system”.

163. Rodriguez, J., et al., 2019
“An eccentric massive Jupiter orbiting a sub-giant on a 9.5 day period discovered in the transiting exoplanet survey satellite full frame images”.
162. Jones, M., et al., 2019
“HD 2685 b: A hot-Jupiter orbiting an early F-type star detected by TESS”.

161. Dragomir, D., et al., 2019
“TESS delivers its first Earth-sized planet and a warm sub-Neptune”.

160. Derekas, A., et al., 2019
“Spectroscopic confirmation of the binary nature of the hybrid pulsator KIC 5709664 found with the frequency modulation method”.

“K2-287 b: An Eccentric Warm Saturn Transiting a G-dwarf”.
AJ, 157, 100.

158. Vanderspek, R., et al., 2019
“TESS Discovery of an Ultra-Short-Period Planet Around the Nearby M Dwarf LHS 3844”.

157. Mallonn, M., et al., 2019
“Ephemeris refinement of 21 hot Jupiter exoplanets with high timing uncertainties”.

156. Wang, S., Jones, M., Shporer, A., et al., 2019,
“HD 202772A b: A Transiting Hot Jupiter Around A Bright, Mildly Evolved Star In A Visual Binary Discovered By TESS”.

“Secondary eclipses of WASP-18b – Near Infrared observations with the Anglo Australian Telescope, the Magellan Clay Telescope and the LCOGT network”.

154. Borkovits, T., et al., 2019
“Photodynamical analysis of the triply eclipsing hierarchical triple system EPIC 249432662”.

153. Huang, C., et al., 2018
“TESS Discovery of a Transiting Super Earth in the π Mensae System”.

152. Crossfield, I., et al., 2018
“A TESS dress rehearsal: Planetary candidates and variables from K2 Campaign 17”.

“A large ground-based observing campaign of the disintegrating planet K2-22b”.
AJ, 156, 227.

150. Peterson, M., et al., 2018
“A 2 Earth radius planet orbiting the bright nearby K-dwarf Wolf 503”.
AJ, 156, 188.

149. Sanghavi, S. & Shporer, A. 2018
“Photopolarimetric characterization of brown dwarfs bearing uniform cloud decks”.

148. Yu, L., et al., 2018
“Two warm, low-density sub-Jovian planets orbiting bright stars in K2 Campaigns 13 and 14”.
AJ, 156, 127.
147. Thompson, S., et al., 2018
"Planetary candidates observed by Kepler. VIII. A fully automated catalog with measured completeness and reliability based on data release 25".

146. Hartman, J., et al., 2018
"HAT-TR-318-007: A double-lined M-dwarf binary with total secondary eclipses discovered by HATNet and observed by K2".
AJ, 155, 114.

145. Giles, H., et al., 2018
"K2-140b — an eccentric 6.57 d transiting hot Jupiter in Virgo",

144. Xu, S., et al., 2018
"A dearth of small particles in the transiting material around the white dwarf WD 1145+017",

143. Hambleton, K., et al., 2018
"KIC 8164262: a heartbeat star demonstrating tidally induced pulsations with resonant locking",

"Precise masses for the planetary system HD 106315 with HARPS",

141. Shporer, A., et al., 2017
"K2-114b and K2-115b: Two transiting warm Jupiters",
AJ, 154, 188.

140. Fuller, J., et al., 2017
"Accelerated tidal circularization via resonance locking in KIC 8164262",

139. Shporer, A., et al., 2017
"Three statistically validated K2 transiting warm Jupiter exoplanets confirmed as low-mass stars",

"Evidence for atmospheric cold-trap processes in the non-inverted emission spectrum of Kepler-13Ab using HST/WFC3",
AJ, 154, 158.

137. Zimmerman, M., et al., 2017
"The pseudosynchronization of binary stars undergoing strong tidal interaction",

136. Shporer, A. 2017
"The astrophysics of visible-light orbital phase curves in the space age".

135. de Wit, J., et al. 2017,
"Planet-induced stellar pulsations in HAT-P-2’s eccentric system"

134. Bayliss, D., et al. 2017,
"EPIC 201702477b: A Transiting Brown Dwarf from K2 in a 41 day Orbit"
AJ, 153, 15.
133. Zhou, G., et al. 2016,
“Simultaneous infrared and optical observations of the transiting debris cloud around WD 1145+017”.

132. Shporer, A., et al. 2016,
“Radial Velocity monitoring of Kepler heartbeat stars”.

131. Hambleton, K., et al. 2016,
“KIC 3749404: A Heartbeat Star with Rapid Apsidal Advance Indicative of a Tertiary Component”.

130. Kostov, V., et al. 2016,
“Kepler-1647b: the largest and longest-period Kepler transiting circumbinary planet”.

129. Stevenson, K., et al. 2016,
“Transiting exoplanet studies and community targets for JWST’s early release science program”.
PASP, 128, 094401.

128. Wong, I., et al. 2016,
“3.6 and 4.5 µm Spitzer phase curves of the highly-irradiated hot Jupiters WASP-19b and HAT-P-7b”.

127. Coughlin, J., et al. 2016,
“Planetary candidates observed by Kepler VII: The first fully automated catalog based on the entire 48 month Kepler dataset (Q1–16 DR24)”.
ApJS, 224, 12.

126. Abdul-Masih, M., et al. 2016,
“Kepler Eclipsing Binary Stars. VIII. Identification of False Positive Eclipsing Binaries and Re-extraction of New Light Curves”.

125. Kirk, B., et al. 2016,
“Kepler Eclipsing Binary Stars VII. The Catalog of Eclipsing Binaries Found in the Entire Kepler Data-set”,
AJ, 151, 68.

124. Hartman, J. D., et al. 2015,
“HAT-P-50b, HAT-P-51b, HAT-P-52b, and HAT-P-53b: Three transiting hot Jupiters and a transiting hot Saturn form the HATNet survey”,
AJ, 150, 168.

123. Shporer, A., Hu, R., 2015,
“Studying atmosphere-dominated hot Jupiter Kepler phase curves: Evidence that inhomogeneous atmospheric reflection is common”,
AJ, 150, 112.

122. Bachelet, E., et al. 2015,
“Red noise versus planetary interpretations in the microlensing event OGLE-2013-BLG-446”,

121. Welsh, W., et al. 2015,
“Kepler 453 b — The 10th Kepler Transiting Circumbinary Planet”,
“Properties of an Eclipsing Double White Dwarf Binary NLTT 11748”,

“Planetary Candidates Observed by Kepler IV: Planet Sample from Q1-Q8 (22 Months)”,

110. Marcy, G. W., et al. 2014,
“Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets”,

111. Hartman, J. D., et al. 2014,
“HAT-P-44b, HAT-P-45b, and HAT-P-46b: Three Transiting Hot Jupiters in Possible Multi-planet Systems”,
AJ, 147, 128.

112. Shporer, A., et al. 2014,
“Atmospheric Characterization of the Hot Jupiter Kepler-13Ab”,

113. Fabrycky, D. C., et al. 2014,
“Architecture of Kepler’s Multi-transiting Systems. II. New Investigations with Twice as Many Candidates”,

114. Dawson, R. I., et al. 2014,

“Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST)”,
PASP, 126, 1134.

116. Mazeh, T., Holczer, T., Shporer, A. 2015,
“Planetary TTV induced by stellar spots — a statistical way to distinguish between prograde and retrograde motion I. Theory”,

117. Rowe, J. F., et al. 2015,
“Planetary Candidates Observed by Kepler. V. Planet Sample from Q1-Q12 (36 Months)”,

118. Mullally, F., et al. 2015,
“Planetary candidates observed by Kepler VI: Planet sample from Q1-16 (47 months)”,

119. Holczer, T., Shporer, A., et al. 2015,
“Planetary TTV induced by stellar spots — a statistical way to distinguish between prograde and retrograde motion II. Analysis of KOIs”,

120. LaCourse, D. M., et al. 2015,
“Kepler eclipsing binary stars — VI. Identification of eclipsing binaries in the K2 Campaign 0 data set”,
MNRAS, 452, 3561.

91. Law, N. M., et al. 2012,
“Three New Eclipsing White-dwarf-M-dwarf Binaries Discovered in a Search for Transiting Planets around M-dwarfs”,

“Kepler-47: A Transiting Circumbinary Multiplanet System”,
Science, 337, 1511.

89. Howard, A. W., et al. 2012,
“Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler”,

88. van Eyken, J. C., et al. 2012,
“The PTF Orion Project: A Possible Planet Transiting a T-Tauri Star”,

87. Bachelet, E., et al. 2012,
“MOA 2010-BLG-477Lb: Constraining the Mass of a Microlensing Planet from Microlensing Parallax, Orbital Motion, and Detection of Blended Light”,

86. Bakos, G. Á., et al. 2012,
“HAT-P-34b-HAT-P-37b: Four Transiting Planets More Massive than Jupiter Orbiting Moderately Bright Stars”,
AJ, 144, 19.

“An abundance of small exoplanets around stars with a wide range of metallicities”,

84. Husnoo, N., et al. 2012,
“Observational constraints on tidal effects using orbital eccentricities”,
MNRAS, 422, 3151.

83. Fabrycky, D. C., et al. 2012,
“Transit Timing Observations from Kepler. IV. Confirmation of Four Multiple-planet Systems by Simple Physical Models”,

82. Ford, E. B., et al. 2012,
“Transit Timing Observations from Kepler. II. Confirmation of Two Multiplanet Systems via a Non-parametric Correlation Analysis”,

81. Shporer, A., et al. 2012,
“On using the beaming effect to measure spin-orbit alignment in stellar binaries with Sun-like components”,
New A, 17, 309.

80. Steffen, J. H., et al. 2012,
“Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations”,
MNRAS, 421, 2342.

79. Howard, A. W., et al. 2012,
“HAT-P-17b,c: A Transiting, Eccentric, Hot Saturn and a Long-period, Cold Jupiter”,

78. Erikson, A., et al. 2012,
“Planetary transit candidates in the CoRoT-SRc01 field”,
77. Shin, I.-G., et al. 2012,
“Microlensing Binaries Discovered through High-magnification Channel”,

76. Borucki, W. J., et al. 2012,
“Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star”,

75. Carone, L., et al. 2012,
“Planetary transit candidates in the CoRoT LRa01 field”,

74. Steinfadt, J. D. R., et al. 2012,
“A Search for Pulsations in Helium White Dwarfs”,
PASP, 124, 1.

73. Welsh, W. F., et al. 2012,
“Transiting circumbinary planets Kepler-34 b and Kepler-35 b”,
Nature, 481, 475.

72. Bakos, G. Á., et al. 2011,
“HAT-P-20b-HAT-P-23b: Four Massive Transiting Extrasolar Planets”,

71. Shporer, A., et al. 2011,
“Detection of KOI-13.01 Using the Photometric Orbit”,
AJ, 142, 195.

70. Barnes, J. W., Linscott, E., Shporer, A. 2011,
“Measurement of the Spin-Orbit Misalignment of KOI-13.01 from Its Gravity-darkened Kepler Transit Lightcurve”,

69. Lissauer, J. J., et al. 2011,
“Architecture and Dynamics of Kepler’s Candidate Multiple Transiting Planet Systems”,

68. Moorhead, A. V., et al. 2011,
“The Distribution of Transit Durations for Kepler Planet Candidates and Implications for Their Orbital Eccentricities”,

67. Hartman, J. D., et al. 2011,
“HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-jitter Stars”,

66. Winn, J. N., et al. 2011,
“Spin-Orbit Alignment for the Circumbinary Planet Host Kepler-16 A”,

65. Muraki, Y., et al. 2011,
“Discovery and Mass Measurements of a Cold, 10 Earth Mass Planet and Its Host Star”,

64. Steffen, J. H., et al. 2011,
“The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry”,

63. Levitan, D., et al. 2011,
“PTF1 J071912.13+485834.0: An Outbursting AM CVn System Discovered by a Synoptic Survey”,
62. Doyle, L. R., et al. 2011,
“Kepler-16: A Transiting Circumbinary Planet”,
Science, 333, 1602.

61. Sing, D. K., et al. 2011,
“Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS”,

60. Fulton, B. J., et al. 2011,
“Long-term Transit Timing Monitoring and Refined Light Curve Parameters of HAT-P-13b”,
AJ, 142, 84.

59. Borucki, W. J., et al. 2011,
“Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data”,

58. Husnoo, N., et al. 2011,
“Orbital eccentricity of WASP-12 and WASP-14 from new radial velocity monitoring with SOPHIE”,
MNRAS, 413, 2500-2508.

“Hat-P-28b and Hat-P-29b: Two Sub-Jupiter Mass Transiting Planets”,

56. Shporer, A., Brown, T. 2011,
“The Impact of the Convective Blueshift Effect on Spectroscopic Planetary Transits”,

55. Latham, D. W., et al. 2011,
“A First Comparison of Kepler Planet Candidates in Single and Multiple Systems”,

54. Hartman, J. D., et al. 2011,
“A Photometric Variability Survey of Field K and M Dwarf Stars with HATNet”,
AJ, 141, 166.

53. Batista, V., et al. 2011,
“MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf”,

52. Tüllmann, R., et al. 2011,
“The Chandra ACIS Survey of M33 (ChASeM33): The Final Source Catalog”,

51. Tingley, B., et al. 2011,
“Transiting exoplanets from the CoRoT space mission. XVI. CoRoT-14b: an unusually dense very hot Jupiter”,

50. Hirano, T., et al. 2011,
“A Possible Tilted Orbit of the Super-Neptune HAT-P-11b”,
PASJ, 63, 531.

49. Miyake, N., et al. 2011,
“A Sub-Saturn Mass Planet, MOA-2009-BLG-319Lb”,

48. Winn, J. N., et al. 2011,
“Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-P-14b is Retrograde”,
AJ, 141, 63.
47. Lammer, H., et al. 2010,
“Exoplanet discoveries with the CoRoT space observatory”,
Solar System Research, 44, 520.

46. Shporer, A., et al. 2010,
“A Ground-based Measurement of the Relativistic Beaming Effect in a Detached Double White Dwarf Binary”,

45. Kipping, D. M., et al. 2010,
“HAT-P-24b: An Inflated Hot Jupiter on a 3.36 Day Period Transiting a Hot, Metal-poor Star”,

44. Winn, J. N., et al. 2010,
“The Oblique Orbit of the Super-Neptune HAT-P-11b”,

43. Ryu, Y.-H., et al. 2010,

42. Shporer, A., et al. 2010,
“Ground-based Multisite Observations of Two Transits of HD 80606b”,

41. Gould, A., et al. 2010,
“Frequency of Solar-like Systems and of Ice and Gas Giants Beyond the Snow Line from High-magnification Microlensing Events in 2005-2008”,

40. Steinfadt, J. D. R., et al. 2010,
“Discovery of the Eclipsing Detached Double White Dwarf Binary NLTT 11748”,

39. Deeg, H. J., et al. 2010,
“A transiting giant planet with a temperature between 250K and 430K”,

38. Fridlund, M., et al. 2010,
“Transiting exoplanets from the CoRoT space mission. IX. CoRoT-6b: a transiting “hot Jupiter” planet in an 8.9d orbit around a low-metallicity star”,

37. Pont, F., et al. 2010,
“The spin-orbit angle of the transiting hot Jupiter CoRoT-1b”,

“Mass measurement of a single unseen star and planetary detection efficiency for OGLE 2007-BLG-050”,

35. Yee, J. C., et al. 2009,
“Extreme Magnification Microlensing Event OGLE-2008-BLG-279: Strong Limits on Planetary Companions to the Lens Star”,

34. Cabrera, J., et al. 2009,
“Planetary transit candidates in CoRoT-LRc01 field”,
“Ground-based photometry of space-based transit detections: photometric follow-up of the CoRoT mission”,

“Rate and nature of false positives in the CoRoT exoplanet search”,

“Planetary transit candidates in the CoRoT initial run: resolving their nature”,

“Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius”,

“Transiting exoplanets from the CoRoT space mission. VII. The “hot-Jupiter”-type planet CoRoT-5b”,

“Independent Confirmation and Refined Parameters of the Hot Jupiter XO-5b”,

“The Transit Light Curve Project. XII. Six Transits of the Exoplanet XO-2b”,
AJ, 137, 4911.

“Photometric Follow-Up Observations of the Transiting Neptune-Mass Planet GJ 436b”,

25. Pietsch, W., et al. 2009,
“Detection of the Second Eclipsing High-Mass X-Ray Binary in M 33”,

“The Transit Light Curve Project. X. A Christmas Transit of HD 17156b”,

“HAT-P-9b: A Low-Density Planet Transiting a Moderately Faint F Star”,

22. Deleuil, M., et al. 2008,
“Transiting exoplanets from the CoRoT space mission. VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert”,

“Transiting exoplanets from the CoRoT space mission. V. CoRoT-Exo-4b: stellar and planetary parameters”,

“The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b”,
19. Pont, F., et al. 2008,
“A transiting planet among 23 new near-threshold candidates from the OGLE survey - OGLE-TR-182”,
“The Transit Light Curve Project. VIII. Six Occultations of the Exoplanet TrES-3”,
17. Williams, B. F., et al. 2008,
“The Chandra ACIS Survey of M33 (ChASeM33): Transient X-Ray Sources Discovered in M33”,
“Transiting exoplanets from the CoRoT space mission. II. CoRoT-Exo-2b: a transiting planet around an active G star”,
15. Barge, P., et al. 2008,
“Transiting exoplanets from the CoRoT space mission. I. CoRoT-Exo-1b: a low-density short-period planet around a G0V star”,
14. Brosch, N., et al. 2008,
“The Centurion 18 telescope of the Wise Observatory”,
Ap&SS, 314, 163.
“OGLE-TR-211 - a new transiting inflated hot Jupiter from the OGLE survey and ESO LP666 spectroscopic follow-up program”,
12. Loeillet, B., et al. 2008,
“Refined parameters and spectroscopic transit of the super-massive planet HD 147506b”,
“Chandra ACIS Survey of M33 (ChASeM33): A First Look”,
10. Bakos, G. Á., et al. 2007,
“HAT-P-5b: A Jupiter-like Hot Jupiter Transiting a Bright Star”,
“HD 147506b: A Supermassive Planet in an Eccentric Orbit Transiting a Bright Star”,
“A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33”,
7. Winn, J. N., et al. 2007,
“The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b”,
AJ, 134, 1707.
6. Gillon, M., et al. 2007,
“Detection of transits of the nearby hot Neptune GJ 436 b”,
5. **Shporer, A.,** et al. 2007,
“Photometric follow-up of the transiting planet WASP-1b”,
MNRAS, 376, 1296.

4. Winn, J. N., et al. 2007,
“The Transit Light Curve Project. V. System Parameters and Stellar Rotation Period of HD 189733”,
AJ, 133, 1828.

3. **Shporer, A.,** et al. 2007,
“Photometric analysis of the optical counterpart of the black hole HMXB M 33 X-7”,

2. Bakos, G. Á., et al. 2006,
“Refined Parameters of the Planet Orbiting HD 189733”,

1. **Shporer, A.,** Mazeh, T. 2006,
“Long-term V-band monitoring of the bright stars of M33 at the Wise Observatory”,

Submitted Papers

17. Mma, I., et al.,
“Two massive Jupiters in eccentric orbits from the TESS full frame images”.
AAS journals, submitted.

16. Dong, J., et al.,
“Warm Jupiters in TESS Full-Frame Images: A Catalog and Observed Eccentricity Distribution”.
AAS journals, submitted.

15. Rodriguez, J., et al.,
“TESS delivers five new hot giant planets orbiting bright stars from the full frame images”.
AAS journals, accepted.

14. Martin, D., et al.,
“TOI-1259Ab — a gas giant with 2.7% deep transits and a bound white dwarf companion”.

13. Hobson, M., et al.,
“A warm giant around the young active star TOI-201”.
AAS journals, submitted.

12. Teske, J., et al.,
“The Magellan-TESS Survey I: Survey Description and Mid-Survey Results”.

11. Trifonov, T., et al.,
“A nearby transiting rocky planet ideal for atmospheric investigation”.
submitted.

10. Dawson, R., et al.,
“Precise transit and radial-velocity characterization of a resonant pair: a warm Jupiter TOI-216c and eccentric warm Neptune TOI-216b”.
AAS journals, accepted.

9. Addison, B., et al.,
“The youngest planet to Have a spin-Orbit alignment measurement AU Mic b”.
AAS journals, submitted

8. Seager, S., et al.,
“HD 219134 revisited: planet d transit upper limit and planet f transit non-detection with
ASTERIA and TESS”. AAS journals, accepted.

2. Shporer, A., et al. 2007,
 “Searching for variables in one of the WHAT fields” in “Transiting extrasolar planets workshop”

1. Shporer, A., et al. 2006,
 “The WHAT project” in “Tenth anniversary of 51 Peg-b: Status of and prospects for hot Jupiter studies”,

4. Shporer, A., et al. 2010,
 “No eclipses in the double WD binary SDSS J125733.63+542850.5”,
 Atel 2778

3. Shporer, A., et al. 2006,
 “Optical modulation of the new eclipsing XRB in M33”,
 ATel 913

2. Pietsch, W., et al. 2006,
 “Detection of the second eclipsing XRB in M33 by Chandra”,
 ATel 905

1. Shporer, A., Ofek, E. O., Mazeh, T. 2003,
 “Possible nova in M33”,
 IAU Circ. 8199