248. Mori, M., et al., 2022
“TOI-1696: a nearby M4 dwarf with a 3 \(R_{\text{Earth}}\) planet in the Neptunian desert”.
AJ, 163, 298.

247. Chontos, A., et al., 2022
“The TESS-Keck Survey: Science goals and target selection”.
AJ, 163, 297.

246. Kabath, P., et al., 2022
“Hot Jupiters TOI-1181b, TOI-1516b and young hot Jupiter TOI-2046b from TESS, orbiting a subgiant and main sequence stars.”.

245. Errico, A., et al., 2022
“HD 83443c: A highly eccentric giant planet on a 22-year orbit”.
AJ, 163, 273.

244. Christian, S., et al., 2022
“A possible alignment between the orbits of planetary systems and their visual binary companions”.
AJ, 163, 207.

243. Kunimoto, M., et al., 2022
“The TESS faint star search: 1,617 TOIs from the TESS Primary Mission”.

242. Wong, I., Shporer, A., et al., 2022
“TESS revisits WASP-12: Updated orbital decay rate and constraints on atmospheric variability”.
AJ, 163, 175.

“Revisiting Kepler transiting systems: Unvetting planets and constraining relationships among harmonics in phase curves”.
AJ, 163, 172.

240. Winters, J., et al., 2022
“A second planet transiting LTT 1445A and a determination of the masses of both worlds”.
AJ, 163, 168.

239. Mann, A., et al., 2022
“TESS Hunt for Young and Maturing Exoplanets (THYME) VI: an 11 Myr giant planet transiting a very low-mass star in Lower Centaurus Crux”.
AJ, 163, 156.

238. Silverstein, M., et al., 2022
“The LHS 1678 system: Two Earth-sized transiting planets and an astrometric companion orbiting an M dwarf near the convective boundary at 20 pc”.
AJ, 163, 151.

237. Gonzalez-Alvares, E., et al., 2022
“A multi-planetary system orbiting the early-M dwarf TOI-1238”.

236. Grunblatt, S., et al., 2022
“TESS Giants Transiting Giants II: The hottest Jupiters orbiting evolved stars”.
AJ, 163, 120.
235. Gan, T., et al., 2022
“TOI-530b: A giant planet transiting an M dwarf detected by TESS”.

234. Wittenmyer, R., et al., 2022
“TOI-1842b: A transiting warm Saturn undergoing reinflation around an evolving subgiant”.
AJ, 163, 82.

233. Huber, D., et al., 2022
“A 20-second cadence view of solar-type stars and their planets with TESS: Asteroseismology of solar analogs and a re-characterization of π Men c”.
AJ, 163, 79.

232. Prsa, A., et al., 2022
“TESS Eclipsing Binary Stars. I. Short cadence observations of 4584 eclipsing binaries in Sectors 1–26”.

231. Mma, I., et al., 2022
“Two massive Jupiters in eccentric orbits from the TESS full-frame images”.
AJ, 163, 9.

230. Powell, B., et al., 2021
“mysterious dust-emitting object orbiting TIC 400799224”.
AJ, 162, 299.

229. Addison, B., et al., 2021
“TOI-1431 b/MASCARA-5 b: A highly irradiated ultra-hot Jupiter orbiting one of the hottest & brightest known exoplanet host stars”.
AJ, 162, 292

228. Trifonov, T., et al., 2021
“A pair of warm giant planets near the 2:1 mean motion resonance around the K-dwarf star TOI-2202”.
AJ, 162, 283.

227. MacDougall, M., et al., 2021
“The TESS-Keck Survey. VI. Two eccentric sub-Neptunes orbiting HIP-97166”.
AJ, 162, 265.

226. Wong, I., Shporer, A., et al., 2021
“TOI-2109 b: An ultra-hot gas giant on a 16 hr orbit”.
AJ, 162, 256.

225. Kostov, V., et al., 2021,
“TIC 172900988: A transiting circumbinary planet detected in one sector of TESS data”.
AJ, 162, 234.

224. Scarsdale, N., et al., 2021,
“TESS-Keck Survey V. Twin sub-Neptunes transiting the nearby G star HD 63935”.

223. Cabot, S., et al., 2021,
“TOI 1518b: A misaligned ultra-hot Jupiter with Iron in its atmosphere”.
AJ, 162, 218.

222. Dong, J., et al., 2021,
“TOI-3302b: A Proto-Hot Jupiter Undergoing High-Eccentricity Tidal Migration”.
ApJL, 920, 16.

221. Teske, J., et al., 2021,
“The Magellan-TESS Survey I: Survey Description and Mid-Survey Results”.

206. Dawson, R., et al., 2021,
“Precise transit and radial-velocity characterization of a resonant pair: a warm Jupiter TOI-216c and eccentric warm Neptune TOI-216b”.

205. Daylan, T., et al., 2021,
“TESS observations of the WASP-121b phase curve”.

204. Seager, S., et al., 2021,
“HD 219134 revisited: planet d transit upper limit and planet f transit nondetection with ASTERIA and TESS”.
AJ, 161, 117.

203. Addison, B., et al., 2021,
“TOI-257b (HD 19916b): A warm sub-Saturn orbiting an evolved F-type star”.

202. Carmichael, T., et al., 2021,
“TOI-811b and TOI-852b: New transiting brown dwarfs with similar masses and very different radii and ages from the TESS mission”.
AJ, 161, 97.

201. Gan, T., et al., 2021,
“An inconvenient entanglement: Revisiting the HD 21749 planetary system with stellar activity modeling”.

200. Daylan, T., et al., 2021,
“TESS discovery of a super-Earth and three sub-Neptunes hosted by the bright, Sun-like star HD 108236”.
AJ, 161, 85.

199. Sha, L., Huang, C., Shporer, A., et al., 2021,
“TOI-964 b and K2-329 b: short-period Saturn-mass planets that test whether irradiation leads to inflation”.
AJ, 161, 82.

198. Parviainen, H., et al., 2021,
“TOI-519 b: a short-period substellar object around an M dwarf validated using multi colour photometry and phase curve analysis”.

197. Bryson, S., et al., 2021,
“The occurrence of rocky habitable zone planets around solar-like stars from Kepler data”.
AJ, 161, 36.

196. Giacalone, S., et al., 2021,
“Vetting of 384 TESS objects of interest with TRICERATOPS and statistical validation of 12 planet candidates”.

195. Schlecker, M., et al., 2020,
“A highly eccentric warm Jupiter orbiting TIC 237913194”.

194. Brahm, R., et al., 2020,
“TOI-481 b & TOI-892 b: Two long-period hot Jupiters from the Transiting Exoplanet Survey Satellite”.

179. **Shporer, A.** et al., 2020,
“GJ 1252 b: A 1.2 R_\oplus planet transiting an M3 dwarf at 20.4 pc”.

178. Guo, Z., **Shporer, A.**, et al., 2020,
“Tidally Excited Oscillations in Heartbeat Binary Stars: Pulsation Phases and Mode Identification”.

177. Wong, I., **Shporer, A.**, et al., 2020,
“The full Kepler phase curve of the eclipsing hot white dwarf binary system KOI-964”.
AJ, 159, 29.

176. Yee, S., et al., 2020,
“The Orbit of WASP-12b is Decaying”.

175. Petigura, E., et al., 2020,
“K2-19b and c are in a 3:2 commensurability but out of resonance: a challenge to planet assembly by convergent migration”.
AJ, 159, 2.

174. Guo, Z., Fuller, J., **Shporer, A.**, 2019,
“KIC 4142768: An evolved Gamma Doradus/Delta Scuti hybrid pulsating eclipsing binary with tidally excited oscillations”.

173. Kossakowski, D., et al., 2019,
“TOI-150b and TOI-163b: two transiting hot Jupiters, one eccentric and one inflated, revealed by TESS near and at the edge of the JWST CVZ”.

172. Quinn, S., et al., 2019,
“Near-resonance in a system of sub-Neptunes from TESS”.
AJ, 158, 177.

171. Dholakia, S., et al., 2019,
“A substellar companion to a hot star in K2’s Campaign 0 field”.
PASP, 131, 4402.

170. Zhou, G., et al., 2019,
“Two new HATNet hot Jupiters around A stars, and the first glimpse at the occurrence rate of hot Jupiters from TESS”.
AJ, 158, 141.

169. Vanderburg, A., et al., 2019,
“TESS spots a compact system of super-Earths around the naked-eye Star HR 858”.

168. Guenther, M., et al., 2019,
“A Super-Earth and two sub-Neptunes transiting the bright, nearby, and quiet M-dwarf TOI-270”.

Nature Astronomy, tmp, 409.

167. Yahalomi, D., et al., 2019,

166. Dawson, R., et al., 2019,
“TOI-216: Two warm, large exoplanets in or slightly wide of the 2:1 orbital resonance”.
AJ, 158, 65.

150. Peterson, M., et al., 2018,
“A 2 Earth radius planet orbiting the bright nearby K-dwarf Wolf 503”.
AJ, 156, 188.

149. Sanghavi, S. & Shporer, A. 2018,
“Photopolarimetric characterization of brown dwarfs bearing uniform cloud decks”.

148. Yu, L., et al., 2018,
“Two warm, low-density sub-Jovian planets orbiting bright stars in K2 Campaigns 13 and 14”.
AJ, 156, 127.

147. Thompson, S., et al., 2018,
“Planetary candidates observed by Kepler. VIII.
A fully automated catalog with measured completeness and reliability based on data release 25”.

146. Hartman, J., et al., 2018,
“HAT-TR-318-007: A double-lined M-dwarf binary with total secondary eclipses discovered by
HATNet and observed by K2”.
AJ, 155, 114.

145. Giles, H., et al., 2018,
“K2-140b — an eccentric 6.57 d transiting hot Jupiter in Virgo”,

144. Xu, S., et al., 2018,
“A dearth of small particles in the transiting material around the white dwarf WD 1145+017”,

143. Hambleton, K., et al., 2018,
“KIC 8164262: a heartbeat star demonstrating tidally induced pulsations with resonant lock-
ing”.

142. Barros, S. C. C., et al., 2017,
“Precise masses for the planetary system HD 106315 with HARPS”,

141. Shporer, A., et al., 2017,
“K2-114b and K2-115b: Two transiting warm Jupiters”,
AJ, 154, 188.

140. Fuller, J., et al., 2017,
“Accelerated tidal circularization via resonance locking in KIC 8164262”,

139. Shporer, A., et al., 2017,
“Three statistically validated K2 transiting warm Jupiter exoplanets confirmed as low-mass
stars”,

138. Beatty, T., et al., 2017,
“Evidence for atmospheric cold-trap processes in the non-inverted emission spectrum of Kepler-
13Ab using HST/WFC3”,
AJ, 154, 158.

137. Zimmerman, M., et al., 2017,
“The pseudosynchronization of binary stars undergoing strong tidal interaction”,

Evidence that inhomogeneous atmospheric reflection is common”,
AJ, 150, 112.

122. Bachelet, E., et al. 2015,
“Red noise versus planetary interpretations in the microlensing event OGLE-2013-BLG-446”,

121. Welsh, W., et al. 2015,
“Kepler 453 b — The 10th Kepler Transiting Circumbinary Planet”,

120. LaCourse, D. M., et al. 2015,
“Kepler eclipsing binary stars — VI. Identification of eclipsing binaries in the K2 Campaign 0 data set”,
MNRAS, 452, 3561.

119. Holczer, T., Shporer, A., et al. 2015,
“Planetary TTV induced by stellar spots — a statistical way to distinguish between prograde and retrograde motion II. Analysis of KOIs”,

118. Mullally, F., et al. 2015,
“Planetary candidates observed by Kepler VI: Planet sample from Q1–16 (47 months)”,

117. Rowe, J. F., et al. 2015,
“Planetary Candidates Observed by Kepler. V. Planet Sample from Q1-Q12 (36 Months)”,

116. Mazeh, T., Holczer, T., Shporer, A. 2015,
“Planetary TTV induced by stellar spots — a statistical way to distinguish between prograde and retrograde motion I. Theory”,

“Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST)”,
PASP, 126, 1134.

114. Dawson, R. I., et al. 2014,

113. Fabrycky, D. C., et al. 2014,
“Architecture of Kepler’s Multi-transiting Systems. II. New Investigations with Twice as Many Candidates”,

112. Shporer, A., et al. 2014,
“Atmospheric Characterization of the Hot Jupiter Kepler-13Ab”,

111. Hartman, J. D., et al. 2014,
“HAT-P-44b, HAT-P-45b, and HAT-P-46b: Three Transiting Hot Jupiters in Possible Multi-planet Systems”,
AJ, 147, 128.

110. Marcy, G. W., et al. 2014,
“Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets”,

81. **Shporer, A.**, et al. 2012,
“On using the beaming effect to measure spin-orbit alignment in stellar binaries with Sun-like components”,
New A, 17, 309.

80. Steffen, J. H., et al. 2012,
“Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations”,
MNRAS, 421, 2342.

79. Howard, A. W., et al. 2012,
“HAT-P-17b,c: A Transiting, Eccentric, Hot Saturn and a Long-period, Cold Jupiter”,

78. Erikson, A., et al. 2012,
“Planetary transit candidates in the CoRoT-SRc01 field”,

77. Shin, I.-G., et al. 2012,
“Microlensing Binaries Discovered through High-magnification Channel”,

76. Borucki, W. J., et al. 2012,
“Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star”,

75. Carone, L., et al. 2012,
“Planetary transit candidates in the CoRoT LRa01 field”,

74. Steinfadt, J. D. R., et al. 2012,
“A Search for Pulsations in Helium White Dwarfs”,
PASP, 124, 1.

73. Welsh, W. F., et al. 2012,
“Transiting circumbinary planets Kepler-34 b and Kepler-35 b”,
Nature, 481, 475.

“HAT-P-20b-HAT-P-23b: Four Massive Transiting Extrasolar Planets”,

71. **Shporer, A.**, et al. 2011,
“Detection of KOI-13.01 Using the Photometric Orbit”,
AJ, 142, 195.

70. Barnes, J. W., Linscott, E., **Shporer, A.** 2011,
“Measurement of the Spin-Orbit Misalignment of KOI-13.01 from Its Gravity-darkened Kepler Transit Lightcurve”,

69. Lissauer, J. J., et al. 2011,
“Architecture and Dynamics of Kepler’s Candidate Multiple Transiting Planet Systems”,

68. Moorhead, A. V., et al. 2011,
“The Distribution of Transit Durations for Kepler Planet Candidates and Implications for Their Orbital Eccentricities”,

67. Hartman, J. D., et al. 2011,
“HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-jitter Stars”,
66. Winn, J. N., et al. 2011,
“Spin-Orbit Alignment for the Circumbinary Planet Host Kepler-16 A”,

65. Muraki, Y., et al. 2011,
“Discovery and Mass Measurements of a Cold, 10 Earth Mass Planet and Its Host Star”,

64. Steffen, J. H., et al. 2011,
“The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry”,

63. Levitan, D., et al. 2011,
“PTF1 J071912.13+485834.0: An Outbursting AM CVn System Discovered by a Synoptic Survey”,

62. Doyle, L. R., et al. 2011,
“Kepler-16: A Transiting Circumbinary Planet”,
Science, 333, 1602.

61. Sing, D. K., et al. 2011,
“Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS”,

60. Fulton, B. J., et al. 2011,
“Long-term Transit Timing Monitoring and Refined Light Curve Parameters of HAT-P-13b”,
AJ, 142, 84.

59. Borucki, W. J., et al. 2011,
“Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data”,

58. Husnoo, N., et al. 2011,
“Orbital eccentricity of WASP-12 and WASP-14 from new radial velocity monitoring with SOPHIE”,
MNRAS, 413, 2500-2508.

“Hat-P-28b and Hat-P-29b: Two Sub-Jupiter Mass Transiting Planets”,

56. Shporer, A., Brown, T. 2011,
“The Impact of the Convective Blueshift Effect on Spectroscopic Planetary Transits”,

55. Latham, D. W., et al. 2011,
“A First Comparison of Kepler Planet Candidates in Single and Multiple Systems”,

54. Hartman, J. D., et al. 2011,
“A Photometric Variability Survey of Field K and M Dwarf Stars with HATNet”,
AJ, 141, 166.

53. Batista, V., et al. 2011,
“MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf”,
52. Tüllmann, R., et al. 2011,
“The Chandra ACIS Survey of M33 (ChASeM33): The Final Source Catalog”,

51. Tingley, B., et al. 2011,
“Transiting exoplanets from the CoRoT space mission. XVI. CoRoT-14b: an unusually dense very hot Jupiter”,

50. Hirano, T., et al. 2011,
“A Possible Tilted Orbit of the Super-Neptune HAT-P-11b”,
PASJ, 63, 531.

49. Miyake, N., et al. 2011,
“A Sub-Saturn Mass Planet, MOA-2009-BLG-319Lb”,

48. Winn, J. N., et al. 2011,
“Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-P-14b is Retrograde”,
AJ, 141, 63.

47. Lammer, H., et al. 2010,
“Exoplanet discoveries with the CoRoT space observatory”,
Solar System Research, 44, 520.

46. Shporer, A., et al. 2010,
“A Ground-based Measurement of the Relativistic Beaming Effect in a Detached Double White Dwarf Binary”,

45. Kipping, D. M., et al. 2010,
“HAT-P-24b: An Inflated Hot Jupiter on a 3.36 Day Period Transiting a Hot, Metal-poor Star”,

44. Winn, J. N., et al. 2010,
“The Oblique Orbit of the Super-Neptune HAT-P-11b”,

43. Ryu, Y.-H., et al. 2010,

42. Shporer, A., et al. 2010,
“Ground-based Multisite Observations of Two Transits of HD 80606b”,

41. Gould, A., et al. 2010,
“Frequency of Solar-like Systems and of Ice and Gas Giants Beyond the Snow Line from High-magnification Microlensing Events in 2005-2008”,

40. Steinfadt, J. D. R., et al. 2010,
“Discovery of the Eclipsing Detached Double White Dwarf Binary NLTT 11748”,

39. Deeg, H. J., et al. 2010,
“A transiting giant planet with a temperature between 250K and 430K”,
38. Fridlund, M., et al. 2010,
“Transiting exoplanets from the CoRoT space mission. IX. CoRoT-6b: a transiting “hot Jupiter” planet in an 8.9d orbit around a low-metallicity star”,

37. Pont, F., et al. 2010,
“The spin-orbit angle of the transiting hot Jupiter CoRoT-1b”,

“Mass measurement of a single unseen star and planetary detection efficiency for OGLE 2007-BLG-050”,

35. Yee, J. C., et al. 2009,
“Extreme Magnification Microlensing Event OGLE-2008-BLG-279: Strong Limits on Planetary Companions to the Lens Star”,

34. Cabrera, J., et al. 2009,
“Planetary transit candidates in CoRoT-LRc01 field”,

“Ground-based photometry of space-based transit detections: photometric follow-up of the CoRoT mission”,

“Rate and nature of false positives in the CoRoT exoplanet search”,

“Planetary transit candidates in the CoRoT initial run: resolving their nature”,

“Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius”,

“Transiting exoplanets from the CoRoT space mission. VII. The “hot-Jupiter”-type planet CoRoT-5b”,

“Independent Confirmation and Refined Parameters of the Hot Jupiter XO-5b”,

“The Transit Light Curve Project. XII. Six Transits of the Exoplanet XO-2b”,
AJ, 137, 4911.

“Photometric Follow-Up Observations of the Transiting Neptune-Mass Planet GJ 436b”,

25. Pietsch, W., et al. 2009,
“Detection of the Second Eclipsing High-Mass X-Ray Binary in M 33”,
“The Transit Light Curve Project. X. A Christmas Transit of HD 17156b”,

“HAT-P-9b: A Low-Density Planet Transiting a Moderately Faint F Star”,

22. Deleuil, M., et al. 2008,
“Transiting exoplanets from the CoRoT space mission. VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert”,

“Transiting exoplanets from the CoRoT space mission. V. CoRoT-Exo-4b: stellar and planetary parameters”,

“The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b”,

19. Pont, F., et al. 2008,
“A transiting planet among 23 new near-threshold candidates from the OGLE survey - OGLE-TR-182”,

“The Transit Light Curve Project. VIII. Six Occultations of the Exoplanet TrES-3”,

17. Williams, B. F., et al. 2008,
“The Chandra ACIS Survey of M33 (ChASeM33): Transient X-Ray Sources Discovered in M33”,

“Transiting exoplanets from the CoRoT space mission. II. CoRoT-Exo-2b: a transiting planet around an active G star”,

15. Barge, P., et al. 2008,
“Transiting exoplanets from the CoRoT space mission. I. CoRoT-Exo-1b: a low-density short-period planet around a G0V star”,

14. Brosch, N., et al. 2008,
“The Centurion 18 telescope of the Wise Observatory”,
Ap&SS, 314, 163.

“OGLE-TR-211 - a new transiting inflated hot Jupiter from the OGLE survey and ESO LP666 spectroscopic follow-up program”,

12. Loeillet, B., et al. 2008,
“Refined parameters and spectroscopic transit of the super-massive planet HD 147506b”,

“Chandra ACIS Survey of M33 (ChASeM33): A First Look”,
10. Bakos, G. Á., et al. 2007,
“HAT-P-5b: A Jupiter-like Hot Jupiter Transiting a Bright Star”,

“HD 147506b: A Supermassive Planet in an Eccentric Orbit Transiting a Bright Star”,

“A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33”,

7. Winn, J. N., et al. 2007,
“The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b”,
AJ, 134, 1707.

6. Gillon, M., et al. 2007,
“Detection of transits of the nearby hot Neptune GJ 436 b”,

5. Shporer, A., et al. 2007,
“Photometric follow-up of the transiting planet WASP-1b”,
MNRAS, 376, 1296.

4. Winn, J. N., et al. 2007,
“The Transit Light Curve Project. V. System Parameters and Stellar Rotation Period of HD 189733”,
AJ, 133, 1828.

3. Shporer, A., et al. 2007,
“Photometric analysis of the optical counterpart of the black hole HMXB M 33 X-7”,

2. Bakos, G. Á., et al. 2006,
“Refined Parameters of the Planet Orbiting HD 189733”,

1. Shporer, A., Mazeh, T. 2006,
“Long-term V-band monitoring of the bright stars of M33 at the Wise Observatory”,

Submitted Papers

19. Giacalone, S., et al.,
“HD 56414 b: A Warm Neptune Transiting an A-type Star”.
AAS Journals, submitted.

18. Rodriguez, J., et al.,
“Another Shipment of Six Short-Period Giant Planets from TESS”.
AAS Journals, submitted.

17. Lillo-Box, J., et al.,
“TOI-969: a late-K dwarf with a hot mini-Neptune in the desert and an eccentric cold Jupiter”.

16. Luque, R., et al.,
“The HD 260655 system: Two rocky worlds transiting a bright M dwarf at 10 pc”.

15. Esparza-Borges, E., et al.,
“A hot sub-Neptune in the desert and a temperate super-Earth around faint M dwarfs: Color validation of TOI-4479b and TOI-2081b”.
14. Yee, S., et al.,
AAS journals, submitted.

13. Hawthorn, F., et al.,
“TOI-836: A super-Earth and mini-Neptune transiting a nearby K-dwarf”.

12. Cacciapuoti, L., et al.,
“TESS discovery of a super-Earth and two sub-Neptunes orbiting the bright, nearby, Sun-like star HD 22946”.

11. Gan, T., et al.,
“TESS discovery of a sub-Neptune orbiting a mid-M dwarf TOI-2136”.

10. Osborn, H., et al.,
“Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076”.
AAS journals, submitted.

“TOI 560: Two transiting planets orbiting a K dwarf validated with iSHELL, PFS and HIRES RVs”.
AAS journals, submitted.

8. Crouzet, N., et al.,
“ASTEPSouth-1184: A 76-day period eccentric eclipsing binary detected with ASTEP South at Dome C, Antarctica”.

7. Wittrock, J., et al.,
“Transit Timing Variations for AU Microscopii b & c”.
AAS journals, accepted.

6. Peterson, M., et al.,
“A temperate Earth-sized planet with strongly tidally-heated interior transiting the M6 dwarf LP 791-18”.
submitted.

5. Eisner, N., et al.,
“Planet Hunters TESS III: two transiting planets around the bright G dwarf HD 152843”.
MNRAS, accepted.

4. Niraula, P., et al.,
“Discovery of six optical phase curves with K2”.
Submitted to AAS journals (arXiv:1812.09227).

3. Lund, M., Pepper, J., Shporer, A., Stassun, K.
“Transiting planets with LSST IV: Detecting planets around white dwarfs”.
Submitted to AAS journals (arXiv:1809.10900).

2. Huang, C., Shporer, A., et al.,
“Expected Yields of Planet discoveries from the TESS primary and extended missions”.

1. Bakos, G., et al.,
“HAT-P-47b and HAT-P-48b: Two low density sub-Saturn-mass transiting planets on the edge of the desert”.

Astronomical Circulars and Bulletins

