Active Galactic Nuclei:
a brief introduction

Manel Errando
Washington University in St. Louis
The discovery of quasars

3C 273: The first AGN

March 16, 1963

INVESTIGATION OF THE RADIO SOURCE 3C 273 BY THE METHOD OF LUNAR OCCULTATIONS

By C. HAZARD, M. B. MACKAY and A. J. SHIMMINS
C.S.I.R.O. Division of Radiophysics, University Grounds, Sydney

z=0.158
The power source of quasars

- The luminosity (L) of quasars, i.e. how bright they are, can be as high as \(L_{\text{quasar}} \sim 10^{12} L_{\text{sun}} \sim 10^{40} \text{W} \).

- The energy source of quasars is accretion power:
 - Nuclear fusion:
 \[
 \Delta E_{\text{nuc1}} = 0.007 mc^2 = 6 \times 10^{11} \text{W} \cdot \text{s} \cdot \text{g}^{-1}
 \]
 - Accretion power:
 \[
 \Delta E_{\text{acc}} = GMm/R = 3 \times 10^{13} \text{W} \cdot \text{s} \cdot \text{g}^{-1}
 \]

Accretion, i.e. matter falling onto a black hole is the only energy source that is powerful enough to fuel the very bright luminosity of quasars.
The discovery of quasars

3C 273: The first AGN

The First Texas Symposium on Relativistic Astrophysics - 16-18 December 1963
Active Galactic Nucleus

- Characteristics
 - Bright compact nucleus
 - Time variability

- Unified model
 - Supermassive black hole
 - Rotating accretion disk
 - Perspective to observer, accretion rate and BH mass determines the kind of AGN.
AGN
Active Galactic Nuclei
A few % of all galaxies

Radio-quiet
85-95%

Spirals
The most common class of AGN

Seyfert 1
Have both broad lines and narrow lines of ionized metals

Seyfert 2
Show only narrow lines of all species

QSOs
Quasi-Stellar Objects

Ellipticals

BL Lacs
Featureless optical spectrum

FRLs
Low peaked

FR2
High luminosity

FR1
Low luminosity

BLR
Low peaked

HBLs
High peaked

FSRQs
Flat Spectrum Radio Quasars

Radio-loud
5-15%

Blazars
<5% of all AGN
Black Holes and Relativistic jets

- Supermassive black holes: 10^6-$10^9 \, M_{\odot}$
- Active Galactic Nuclei (AGN)
- Outflows of particles and radiation: relativistic jets.
- Aligned to our line of sight: Blazars.
- See them from radio to gamma-ray energies.
- Their emission is highly variable.

\[
\begin{align*}
\nu &\quad F_\nu \\
10^{10} &\quad 10^{-12} \\
10^{12} &\quad 10^{-11} \\
10^{14} &\quad 10^{-10} \\
10^{16} &\quad 10^{-9} \\
10^{18} &\quad 10^{-8} \\
10^{20} &\quad 10^{-7} \\
10^{22} &\quad 10^{-6} \\
10^{24} &\quad 10^{-5} \\
10^{26} &\quad 10^{-4} \\
10^{28} &\quad 10^{-3}
\end{align*}
\]

\[
\begin{align*}
\nu &\quad F_\nu \\
10^{10} &\quad 10^{-14} \\
10^{12} &\quad 10^{-13} \\
10^{14} &\quad 10^{-12} \\
10^{16} &\quad 10^{-11} \\
10^{18} &\quad 10^{-10} \\
10^{20} &\quad 10^{-9} \\
10^{22} &\quad 10^{-8} \\
10^{24} &\quad 10^{-7} \\
10^{26} &\quad 10^{-6} \\
10^{28} &\quad 10^{-5}
\end{align*}
\]
Leptonic models

- Soft photon population:
 - SSC: synchrotron photons
 - Emission from the disk
 - Broad Line Region
 - Reprocessed emission from the dust torus
Correlated variability

Krawczynski et al. 2004

1ES 1959+650

\[\gamma \text{-} sync \]

\[\gamma \text{-} VHE \]
Periodic variability from AGN jets

PKS 2155-204
$P_1 \sim 1.7$ years
$P_2 \sim 0.7$ years
$P_1 + P_2 \rightarrow 29\%$ var
The periodic variability could be due to two supermassive black holes orbiting around each other.
Summary

• There is a lot we don’t yet know about how supermassive black holes grow, and how they shape star formation in their host galaxies.

• Radiation from accreting supermassive black holes (AGN) is the best tracer we have of black hole evolution.

• Basic models exist that explain the radiation we observe from relativistic jets.

• Most models break down when observational data becomes more abundant and more detailed.
References

Active Galactic Nuclei - Robson
Accretion power in astrophysics - Frank, King & Raine
High Energy Astrophysics - Longair

Email me if you have further questions:
errando@physics.wustl.edu
Using python to study astrophysical catalogs

• We will now spend 15 min talking about astrophysical catalogs.

• A catalog is generally the result of a very detailed analysis of a large amount of astrophysical data.

• It differs from a single source analysis in that it aims at understanding the properties of a population of sources, rather than on individual objects.

• We will use as an example the Fermi-LAT 4FGL catalog. It summarizes the properties of all gamma-ray sources that Fermi, a gamma-ray satellite, has detected in about 10 years of operation.

• You can find and download the code that I will run here:
 - https://confluence.slac.stanford.edu/download/attachments/249335606/BL_Lacs_catalog_sample.ipynb?version=1&modificationDate=1559398718000&api=v2
The Fermi-LAT 4FGL catalog