X-ray news from RW Auriga: Optical dimming associated with iron rich corona and exceptionally high absorbing column density

Hans Moritz Günther (1); T. Birnstiel (2); D. P. Huenemoerder (1); D. A. Principe (1); P. C. Schneider (3); S. J. Wolk (4); Franky Dubois (5, 6); Ludwig Logie (5, 6); Steve Rau (5, 6); Sigfried Vanaverbeke (5, 6, 7)

(1) MIT, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; (2) University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, 81679 Munich, Germany; (3) Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029, Hamburg, Germany; (4) Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; (6) Astrolab IRIS, Ieper, Belgium; (7) Vereniging voor Sterrenkunde, Werkgroep Veranderlijke Sterren, Belgium; (7) Center for Plasma Astrophysics, University of Leuven, Belgium

RW Aur A
- Physically bound with RW Aur B (semi-major axis 200 au)
- Age: 10 Myr
- Distance: 140 pc
- Mass: 1.4 solar masses
- Active accretion disk

Chandra images
- Binary resolved (blue regions are spectral extraction regions)
- Cross-contamination low and can be modeled.
- RW Aur A variable

Chandra spectra
- Vastly different every time we look

We observe
- Emission at high energies multiplies
- Absorbing column density N_H increases by 400 to 4×10^{23} cm$^{-2}$
- Fe abundance in corona increases from 0.5 to 15 times solar

Absorber
- Optical extinction is grey → thick absorber or large grains
- N_H/A_V skyrockets: gas rich absorber? (or at least non-ISM grains)

Where does it come from?
Ideas:
1) Break up planet(esimal) with Earth-like Fe core (e.g. due to collision).
2) Collect dust in dust trap, then release due to some massive disturbance in the inner disk.

Image credit: NASA/CXC/M. Weiss;