Three Talks: How Stars Are Born; Modern Cyclopses – The Era Of Giant Telescopes; Exoplanet Science In The Era Of TESS

Monday January 28, 2019 2:30 pm

How Stars are Born

Dr. Moritz Guenther, 2:30 – 3:00pm in 37-252

While our Sun is almost 5 billion years old, stars still form in the the dark clouds of our Milky Way. When we observe those regions we can learn how star and planet formation works, so that we also understand the formation of our own solar system and the Earth better. I will describe how we observe those regions that are hidden to the naked eye using infrared and X-ray telescopes to obtain stunning images of stellar nurseries. Zooming in on just a few of the young stars, I show how a gas cloud collapses to form a hot gas core that is the birth place of another sun and possibly a few planets. This is the stage of star formation where I concentrate my own research and I will describe how professional astronomers gain access to space telescopes, share my experiences of how to use the Hubble Space Telescope (HST) for my observations of young stars and I will show an example of how we process the observations to extract scientific conclusions. Star formation is a very active area of research with many open questions to solve and certainly one of the areas in astronomy that delivers extremely beautiful images of the Milky Way that surrounds us.

No enrollment limit for talk, no advance sign-up required.

Modern Cyclopses – The Era of Giant Telescopes

Dr. Gabor Furesz, 3:00 – 3:30pm in 37-252

While astronomical observations have been carried out for thousands of years it is only the past four centuries when our naked eyes have been aided by telescopes. With today’s ‘giant eyes’ we can peer really deep into the night sky, literally reaching the edge of the (observable) Universe. But to get there we have to build larger and larger, ever more sensitive, better telescopes and instruments. It has been really just the past few decades when progress was exponential, just like in other fields: thanks to computers, highly sensitive digital detectors and other modern design and manufacturing technologies. But progress in astronomical instrumentation is also influenced by commercialization, the consumer market, as well as history and politics – as these extremely large and complex scientific machines require collaboration and unique technology developments that point beyond a single nation, even the U.S. One could rightfully ask: do we really need these even larger giant telescopes, if they are so expensive and we already can see to the edge of the Universe? I will argue for the “yes” answer by showing a few very exciting science cases, like the detection and characterization of extrasolar planets and understanding the chemical evolution of the Universe. To investigate these questions it is not enough to simply detect the light but also to analyze it in detail. While spectroscopy is a well established and great method to do so, it requires a lot of photons to be captured – which hopefully will be delivered by the next generation of giant light buckets.

No enrollment limit for talk, no advance sign-up required.

Exoplanet Science in the era of TESS

Dr. Jenn Burt, 3:30-4:00pm in 37-252

The beginning of the TESS spacecraft’s science mission in mid 2018 promises the detection of thousands of exoplanets orbiting bright, nearby stars. These planets will provide astronomers with our best ever opportunity to mount extensive follow up observation efforts and try to understand the composition, distribution and evolution of planets in our galaxy. This talk will describe the anticipated TESS planet yield, its impact on the exoplanet field, and some of the follow up methods that astronomers will use to probe the composition of the planets’ rocky cores and/or gaseous outer atmospheres.

No enrollment limit for talk, no advance sign-up required.


Event Contact

Debbie Meinbresse