Follow-on Science Instrument
Monthly Status Report No. 007
Prepared in accordance with DR 972MA-002
DPD #972
Prepared for
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812
Center for Space
Research; Massachusetts Institute of Technology; Cambridge, MA 02139
1.0 Distribution List for Monthly Status Report
MIT-External Electronic:
FD03/Mike Smith, MSFC Carl.M.Smith@msfc.nasa.gov
PS41/Steve Morris, MSFC Steven.D.Morris@msfc.nasa.gov
ES84/Martin Weisskopf, MSFC martin@smoker.msfc.nasa.gov
MIT-External Hardcopy:
None specified.
MIT-Internal Electronic:
Deborah Gage dgage@space.mit.edu
Gail Monahan gmonahan@mit.edu
MIT-Internal Hardcopy:
Claude Canizares Room 3-234 (via Gail Monahan)
Deepto Chakrabarty Room 37-501 (via Deborah Gage)
Kathryn Flanagan Room NE80-6103 (via Deborah Gage)
Please send distribution requests and other comments on this document to dd@mit.edu .
2.0 Schedule of Past and Future Events Relevant to HETG
Date |
Past Events |
Comment |
Sept.4,5 |
Chandra Quarterly and IAR, Cambridge, MA |
HETG participated |
Sept. 4-6 |
Workshop on X-ray surveys, Santander, Spain |
(N. Schulz) |
Sept. 9-13 |
Wind, Bubbles, and Explosions, Patzcuaro, Mexico |
(N. Schulz) |
Sept. 23-27 |
The Physics of Relativistic Jets in the Chandra and XMM Era, Bologna, Italy |
(S. Markoff) |
Date |
Future Events |
Comment |
Oct. 7 |
Chandra Fellows Symposium , Philips Aud., SAO |
(M.F.Gu and J.Lee) |
Oct. 10-12 |
34th COSPAR, Houston TX: E1.2 …clusters of galaxies and black holes E1.4 …supernova remnants and neutron stars |
S.Gallagher talk; J. Migliazzo on N103B M. Stage on NSs |
Oct. 20-25 |
Coevolution of Black Holes and Galaxies, Carnegie Obs.s, Pasadena, CA. |
S.Gallagher poster |
Oct. 24,25 |
High Resolution X-Ray Spectroscopy with XMM-Newton and Chandra, UK |
D.Dewey talk |
Nov. 1 |
Updated HETG section of Proposers’ Observatory Guide to CXC |
HETG provide input |
Nov. 3-8 |
Galactic Center Workshop 2002, Kailua-Kona HI |
(S. Markoff) |
Nov. 4-5 |
First US XMM-Newton SAS Workshop, Goddard |
A. Juett |
Nov. 6,7 |
Chandra Calibration Workshop at CXC, Cambridge MA |
D.Dewey support |
Nov. 14,15 |
X-ray Binaries in the Chandra and XMM-Newton Era, Camb. MA |
A. Juett |
Dec. 9-13 |
XXI "Texas" Symposium on Relativistic Astrophysics , Florence, Italy |
J.Lee, AGN |
Jan. 5-9 |
American Astronomical Society 201st Meeting , Seattle, WA |
S. Gallagher, NGC 5506 A. Fredericks, E0102 |
July ‘03 |
IAU Symp. 218, "Young Neutron Stars and Their Environment", Sydney, Australia |
|
3.0 Instrument Status and Science Support
3.1 Flight Events and HETG Instrument Status
The HETG continues to function with no outstanding issues. There were 6 targets observed in 9 observation intervals by the HETG in September 2002. The target MRC 2251-178 (obsid 2977) is an HETG GTO target in cycle 3 and its data are in-house and being examined.
3.2 Science Support to CXC, SWG, etc.
There were no major support activities besides supporting the IAR in early September. We are on track to provide POG input by the end of October.
4.0 GTO Science Program
4.1 Observations and Data status
Progress in the GTO program observations and data analyses are noted in the Table of Appendix A. This month data from the recent Cycle 3 GTO observation of the AGN MRC 2251-178 were received and processed.
4.2 Science theme progress
The HETG GTO science efforts span a range of “science themes” given in the list below. This month progress and plans in the “Cool Stars” theme are presented.
GTO Science Theme |
Abbreviation (for App’ix A) |
Researchers (HETG in caps) |
Date of last [next] reporting Assembler of theme material |
“Cool” Stars |
Cool Star |
dph,nss,psw |
September, 2002. Dave Huenemoerder |
“Hot” Stars |
Hot Star |
|
Not yet reported [Oct.’02] |
X-ray Binaries & Accretion Disks |
XRB |
MJ-G,AJ,nss,hlm |
Not yet reported [Nov.’02] |
Supernova Remnants |
SNR |
KAF,DD,JMM, AF,jh,gea,tp |
May, 2002. Dan Dewey |
Isolated Neutron Stars |
iNS |
MDS,hlm, nss |
Not yet reported |
Galaxies & Clusters of Galaxies |
Gal., Clust. |
TJ,mw,jh |
August, 2002. Michael Wise, Tesla Jeltema |
Active Galactic Nuclei and Jets |
AGN, Jet |
SG,RG,hlm |
June, 2002. Herman Marshall |
Inter-Stellar Medium |
ISM |
AJ,nss |
Not yet reported [Dec.’02] |
Inter-Galactic Medium |
IGM |
SG,RG,hlm |
July, 2002. Taotao Fang |
“Cool” Stars Research Progress
Introduction to Stars
Stars are the main actors in creating variety in the universe. Their fusion “burning” of primordial H and He creates the elements we are made of and illuminates the universe.
In studying stars we consider two general categories: “Cool stars” which include stellar coronae, active binaries, and low-mass pre-main sequence stars; and “Hot” stars which consist of massive stars, associated winds and shocks, and stars in young star clusters.
Cool stars, those of spectral type later than F0, are frequently X-ray sources with band-limited luminosities (0.1-10 keV) on the order of 10^31 ergs/s. They are particularly active if they are rapidly rotating, as the tidally-locked RS CVn (spotted stars) binaries are. The activity is hypothesized to be due to a magnetic dynamo resulting from differential rotation, as seen in the Sun. The dynamo is presumed to be active only in cool stars because they have a convection zone needed to drive the dynamo. Young, low-mass stars are also strong X-ray sources, presumably because they have not yet lost their natal angular momentum. Stars hotter that spectral type F are fully radiative with no convection dynamo; for example, A-stars are well known to be X-ray dark.
Although the surface temperature of “Cool” stars is less than 10,000 degrees, the magnetic dynamo can create tempertures in the millions of degrees in the star’s cornoa. This coronal X-ray emission is a small fraction of the total stellar luminosity (10^-6 in the case of the Sun, 10^-3 in the case of the most active stars), but this energy is the primary radiative manifestation of the atmospheric heating by the magnetic dynamo; it represents the generation and rearrangement of magnetic fields from the star, and is an important source of interaction of the star with the surrounding medium.
With HETGS X-ray spectra, we can now clearly resolve the coronal X-ray emission into line and continuum components. As the comparison with an ASCA (CCD) spectrum at right demonstrates -- we can now “see the forest-floor between the trees”. From these measurements we can determine the plasma temperature structure, density, elemental abundances, and time variability. If we can detect any eclipses or rotational modulation, then we may also be able to constrain the geometry of the emitting structures.
Another feature of an active corona is flaring activity. Injection of energy through high-energy electrons causes heated plasma to expand while at the same time being confined to loop structures by the local coronal magnetic fields. Such loops are imaged on the Sun by TRACE and Yohkoh satellites and provide models we can apply to other stars.
For more fantastic images and an overview of the Solar corona, see
http://vestige.lmsal.com/TRACE/POD/NAS2002v2.html and
http://isass1.solar.isas.ac.jp/ .
For more basic information on the Sun, Stars, and Stellar Evolution see
Lessons 3, 4, and 5 at http://cosmos.colorado.edu/astr1120/hypertext.html
"The dynamo is at the core of the activity problem. As argued in here, stellar activity, and therefore the stellar dynamo, is key to understanding life in the Universe and Earth's habitability. There is, however, no comprehensive model of solar and stellar magnetic activity.” K. Schijver (http://canopy.lmsal.com/schryver/ .)
Summary of “Cool Star” GTO Observations and Activities
The stars in the HETGS GTO program are listed in the table below. There are five “cool” stars among them and some highlights of the observations are presented in the following pages. II Peg is a classical, highly active, single-lined RS CVn binary. AR Lac is a 1.98 day period RS CVn binary comprised of a K0 subgiant and a G dwarf. TW Hydra a pre-main-sequence star which is nearby, isolated, and a classical T Tauri object (artist’s impression at right): it's X-ray spectrum is unlike any of the other cools stars, possibly due to an accretion stream. A related object, TV Crt, has been accepted for AO-4. Finally, TY Pyx is a 3-day period near-totally eclipsing RS CVn system which showed eclipse modulation and a short flare.
Obs cycle |
obsid |
Type |
Target |
Binary? (period) |
Flare(s) seen? |
Comment |
1 |
1451 |
Cool |
II Peg |
7 d |
yes |
RS CVn binary; “two-ribbon” flare |
1 |
3,4 |
Hot |
Trapezium |
--- |
--- |
Many hot (and cool) stars |
1 |
5 |
Cool |
TW Hydra |
isolated |
yes |
extremely cool, very low iron abundance, high neon abundance. |
1 |
6-11 |
Cool |
AR Lac. |
1.98 d |
yes |
RS CVn binary; |
2 |
601 |
Cool |
TY Pyx. |
3 d |
yes |
near-totally eclipsing RS CVn |
2 |
599, 2420 |
Hot |
Iota Orionis |
--- |
--- |
Two O-stars; colliding winds? |
3 |
2525, 2526 |
Hot |
NGC 2362 |
--- |
--- |
Young (5-7 Myrs ) star cluster in the Galaxy; w/ massive stars |
4 |
3728 |
Cool |
TV Crit. |
Pair of binaries,1” sep. |
Not yet observed |
weak-lined T Tauri star; solar-mass “Vega-type'' (dust-disk) system; in TW Hydra assoc. |
HETG Observation of II Peg
II Peg (AO-1; Obsid 1451) is a classical, highly active, single-lined RS CVn binary with a period of 7 days. It is heavily spotted – the optical light curve amplitude has been as large as 0.5 magnitude. As shown at right, the HETGS spectrum clearly resolves a large number of emission lines peaking above the background continuum level. The brightest lines are from Ne and Oxygen and Fe lines are about 0.1 of Solar values. |
|
The HETGS observation showed a steady flux for about 25 ks, then an increase by about a factor of 3 in a classic Solar "two-ribbon flare" profile, then began a decay as the observation ended. This is shown in the plot at left by the behavior of the continuum level (dense black vertical lines) which is well fit by a flare model (green line.) The fluxes of discrete lines are shown as well.
A wide range of temperatures exist in II Peg’s corona with different temperatures giving rise to different patterns of emission lines. For a given set of measured lines and continuum it is possible to create a distribution of temperatures causing the emission. This “DEM” analysis has been carried for both the “quiet” pre-flare time and the flaring period of the observation. The plot below shows a broad range of temperatures between 3 million [LogT=6.5] and 100 million [8.0] degrees in the pre-flare state (green.) During the flare the high temperatures are increased with a peak around 45 million [7.65] degrees (grey).
Observations of AR Lac
AR Lac a 1.98 day period RS CVn binary comprised of a K0 subgiant and a G dwarf. Observations were made at 6 times to sample 3 phases twice each, covering quadratures and eclipses as shown in the count-rate plot at right.
There was much intrinsic variation, including one moderate flare (blue, peak at phase 0.47). No observations at repeated phases showed repeatable flux, though the quadrature observations (phase 0.2-0.3) largely overlap in flux. Eclipses were not detected. Both simultaneous and contemporaneous EUVE data were obtained in collaboration with J.Drake/CfA.
Using the “DEM” method mentioned previously (II Peg’s flare temperatures above), a DEM plot for AR Lac’s emission has been created and is shown at left. The solid line is the estmated DEM; the dashed lines give an estimate of the confidence range of the DEM. Features of the DEM are a low temperature (1.6 million [6.2] deg.s) and two high temperature (8 and 23 million [6.9,7.37] deg.s) peaks as well as a high-temp plateau region extending to above 100 million degrees [8.].
Ne and Fe variation in a set of Cool Stars
The Sun “is only one example of a large class of stars; a single example provides insufficient constraints to outline a path for dynamo theorists. In order to understand the solar dynamo, we need a population study: look at stars like the Sun, at young stars, old stars, binary stars, exotic stars, ... " K. Schijver (http://canopy.lmsal.com/schryver/ .)
The Chandra archive has a growing collection of high-resolution stellar X-ray spectra. Here are assembled HETG spectra of TW Hya and the active, late-type stars AB Dor (a rapidly rotating K dwarf, obsid 16), Capella (obsid 1318), HR 1099 (obsid 62538), AR Lac (6,9), TY Pyx, UX Ari (605), Lambda And (obsid 609), and II Peg in the spectral region encompassing the 13.56 A He-like Ne IX triplet and the 15.01 A Fe XVII line (see also Drake et al. 2001, Canizares et al. 2000, and Huenemoerder et al. 2001).
Spectra are shown as raw counts in the summed MEG +/-1st orders, in 0.005 A bins, and have been smoothed slightly. They are arranged from top to bottom roughly in order of the Ne IX 13.56 A to Fe XVII 15.01 A ratio, which is more sensitive to abundance than to temperature. Lines labeled are of Ne IX , Fe XVII-XVIII , and O VII.
“Cool” Stars Plans and Further Work
· AR Lac: finish paper with final revisions of co-author comments.
· TY Pyx: finish detailed analyses
o Measure line strengths
o fit the emission measure distribution and abundances
o extract light curves in continuua and lines
o examine differences in spectra for different count rates
· TV Crt observations (AO-4) have not been scheduled. This star is a visual double, with 1 arcsec separation, and will present a spatial-spectral data analysis challenge. Continue exploring spatial-spectral analysis methods in preparation for these data.
· Improve the modeling of the density sensitive He-like triplets of Ne IX and Mg XI, which are blended with. Current results on these ratios should be considered preliminary and subject to revision.
· Compare and contrast more ensembles from many observations, both GO and GTO, like the Ne/Fe comparison plot shown above.
· A common feature of most observations to date is that flares are frequent. It may not be possible to detect uncompromised rotational modulation or eclipse signatures, which are crucial to density/volume estimates and magnetic loop models. Consider observations of less active, though fainter, stars for this purpose.
4.3 HETG-related Software: Development, Evaluation, and Support
Software was created in IDL and in ISIS to support the complex and computationally intense process of creating “emission measure distributions” or DEMs from measurements of the line and continuum fluxes in a stellar spectrum. Various monte carlo techniques and tests were investigated to get accurate error bars on the DEM values.
Modeling techniques are being enhanced. Plasma models have been improved in ISIS with support of J.Houck, P.Wodjowski, and D.Huenemoerder. Efforts are under way or planned to incorporate tabulation of flux measurements and differential emission measure modeling.
4.4 Presentations (September)
N.S. Schulz, “X-Rays from Very Young Massive Stars”, Sept.11, 2002, Winds, Bubbles and Explosions, Patzcuaro, Mexico.
4.5 Publications (August), see also: http://space.mit.edu/csr_pubs.html
No publications this month.
5.0 Systems and Engineering Support
5.1 Documentation and “Design Knowledge Capture”
No major efforts in this area this month.
5.2 Spares Retest and Test Instrumentation
Test system software is operational and now the source and detectors’ operation are being check prior to starting retests.
5.3 Anomalies, Insert/retract, etc. Support
No action on this front.
6.0 Management
6.1 Program Office & NASA Support
Received contract mod for updated GFE equipment list.
6.2 MIT-internal management activities
Supported drafting of job description for new Administrative Assistant position. Looking into “RAID” disk storage system for use in backing up large but valuable data analysis files.
7.0 Open Issues, Problems, etc.
There are no known critical open issues or problems regarding the HETG.
Thanks for timely approval of Dr. Dewey’s October travel to the UK to participate in the meeting “High Resolution X-ray Spectroscopy with XMM-Newton and Chandra”.
A request for foreign travel for Dr. Lee in the amount of $5,900 was sent from MIT dated 9/30/02 and as outlined will support collaboration on a paper on the GTO target MCG—6-30-15 in the UK and presentation of HETG results at the “XXI Texas Symposium on Relativistic Astrophysics” in Italy.
Appendix A. GTO Observation Status Tables
Notes:
1. Entries indicating progress during this period are shown in this font.
2. For CSR Publication references (CSR-YY-NN) see http://space.mit.edu/csr_pubs.html
3. Up-to-date observation information can be obtained from http://cxc.harvard.edu/cda/ using the WebChaSeR link.
Object Science Theme |
AO |
Obs ID |
Seq. No. |
Expos. (ks) |
Observer / Analyst |
Start Date |
Comments & Analysis |
Talks and Publications |
4U 1626-67 XRB |
4 |
3504 |
400257 |
[100.0] |
N. Schulz |
|
Prop. No.: 04400027 (Cycle 1 obs. also) |
|
Sco X-1 XRB |
4 |
3505 |
400258 |
[15.0] |
N. Schulz |
|
Reviewed parameters. Prop. No.: 04400046
|
|
H1426+428 IGM |
4 |
3568 |
700630 |
[102.0] |
T. Fang |
|
Prop. No.: 04700987 |
|
Mrk 290 AGN |
4 |
3567 |
700629 |
[250.0] |
J. Lee |
|
Prop. No.: 04700988 |
|
TV Crit “Cool” Stars |
4 |
3728 |
200198 |
[100.0] |
D. Huenemoerder |
|
Prop. No.: 04200007, Selected in peer review![6/02] |
|
E0102 SNR |
4 |
3828 |
500307 |
[140.0] |
K. Flanagan, D.Dewey |
|
Prop. No.: 04500008, (Cycle 1 obs. also) Selected in peer review![6/02] |
|
Cycle 3
Object Science Theme |
AO |
Obs ID |
Seq. No. |
Expos. (ks) |
Observer / Analyst |
Start Date |
Comments & Analysis |
Talks and Publications |
MRC 2251-178 AGN |
3 |
2977 |
700416 |
148.5 |
J. Lee/ H. Marshall, R. Gibson |
9/11/02 |
Data obtained, prelim analysis and line finding carried out. |
|
NGC 7469 AGN |
3 |
3147 (+2956) |
700586 |
[70.0] [+80.0] |
J. Lee/ H. Marshall |
--- |
Scheduled: Oct. ‘02 w/HST Supplement Kriss GO. |
|
1H 0414+009 IGM, AGN |
3 |
2969, 4284 |
700408 |
50.8, 36.9 |
T. Fang, S. Gallagher |
8/1/02 |
Shows lovely power law. First pass through data. Data in-house.[8/02] |
|
GX 349+2 XRB |
3 |
3354 |
900193 |
35.2 |
N. Schulz, A. Juett |
4/9/02 |
For ISM study; Observed on 4/9; data available 5/2 [4/02] |
Santander, AAS00, AAS01 |
NGC 2362
“Hot” Stars |
3 |
2525, 2526 |
200133, 200134 |
44.5, 43.8 |
N. Schulz, P. Wojdowski, J. Kastner/RIT |
3/28/02, 4/23/02 |
Analysis continues.[6,9/02] Previewed the data.[5/02] Observed 4/23 [4/02] |
Patzcuaro, ‘02 |
1ES 1028+511 IGM, AGN |
3 |
2970, 3472 |
700409 |
21.8, 69.6 |
T. Fang, S. Gallagher |
3/27/02, 3/28/02 |
Shows lovely power law.First pass through data.[8/02] |
|
3C 279
IGM, AGN, Jet |
3 |
2971 |
700410 |
108.2 |
T. Fang, H. Marshall |
3/21/02 |
Overlay radio contours on jet.[8/02] Data reduced; jet seen in zo image.[5/02] Data are in-house [3/02]. |
|
IRAS 18325-5926 AGN |
3 |
3148, 3452 |
700587 |
56.9, 51.1 |
J. Lee, S. Gallagher |
3/19/02, 3/23/02 |
Multi observatory collaboration…[7/02] Data are in-house [3/02]. |
|
Cycle 2
Object |
AO |
Obs ID |
Seq. No. |
Expos. (ks) |
Observer / Analyst |
Start Date |
Comments & Analysis |
Talks and Publications |
Cyg X-2 XRB, ISM |
2 |
1016 |
400094 |
15.1 |
N. Schulz, A. Juett |
8/12/01 |
Fit O, Fe, Ne edges.[7/02] ISM study: cold absorption edges[5/02] |
Santander, AAS00, AAS01 |
Cas A SNR |
2 |
1046 |
500112 |
69.9 |
K. Flanagan, D.Dewey, M. Stage |
5/25/01 |
Began NEI fits to Si knot image for continuum.[8/02] Si knot analysis started [3/02]. |
In CRC Royal society talk 2002. |
4U 0142+61
iNS |
2 |
1018 |
400096 |
25.4 |
N. Schulz, A. Juett |
5/23/01 |
Finishing additional analysis [3/02] |
ApJ, 2002, 568, pp. L31, HEAD-2002[4/02] CSR-02-16[3/02] |
Mrk 766 AGN |
2 |
1597 |
700213 |
90.5 |
P. Ogle, J. Lee |
5/7/01 |
Paper in preparation [4/02] |
|
NGC 4696 Gal. |
2 |
1560 |
600117 |
85.8 |
M. Wise |
4/18/01 |
To be analyzed. |
|
EXO 0748-676
XRB |
2 |
1017 |
400095 |
49.0 |
N. Schulz, H. Marshall, M. Jimenez-Garate |
4/14/01 |
Performed abundance measurements.[8/02] Performed spectral fits in time cuts.[7/02] Analyzed burst spectra.[5/02] |
Work on paper continued. Second draft and new figure created.[8/02] HEAD02 |
SS 433
XRB, Jet |
2 2 1 |
1019, 1020, 106 |
400097, 400098, 400019 |
23.7, 23.0, 28.9 |
H. Marshall, N. Schulz |
3/16/01, 11/28/00, 9/23/99 |
Complete analysis of Cycle 2 data |
CSR-02-01, CSR-01-78 |
1H 1821+643
AGN, IGM |
2 |
1599 |
700215 |
101.3 |
P. Ogle, T. Fang |
2/9/01 |
|
CSR-02-16.5[4/02], CSR-01-69 |
Iota Orionis “Hot” Star |
2 |
599, 2420 |
200075 |
37.6, 12.9 |
N. Schulz, P. Wojdowski |
2/7/01, 2/8/01 |
DEM distribution derived. Make arfs for one-ion analysis.[8/02] Data reviewed[5/02] |
Patzcuaro, ‘02 |
TY Pyx (HD77137) “Cool” Star |
2 |
601 |
200076 |
49.8 |
D. Huenemoerder |
1/3/01 |
Preliminary analysis done. |
(spectrum in CSR-02-02) |
N103B
SNR |
2 |
1045, 2410, 2416 |
500111 |
74.0, 25.7, 17.6 |
K. Flanagan, J. Migliazzo, D. Dewey |
1/1/01, 1/3/01, 1/2/01 |
New fits, abundance plots, one-ion fits. Fit vpshock w/APED lines…[7/02] |
Poster: HEAD-2002[4/02] |
NGC 5506 AGN |
2 |
1598 |
700214 |
90.0 |
P. Ogle, J. Lee, S. Gallagher |
12/31/00 |
Created radial profile. Literature review; analyze imaging data; get HST data.[8/02] |
Paper in preparation[4/02] |
ZW 3146 Clust. |
2 |
1651 |
800119 |
167.8 |
M. Wise |
12/25/00 |
Include background subtraction.[7/02] Re-analysis continued w/ ISIS[6/02]; started[5/02] |
Cluster paper in draft[5/02] |
Cycle 2, above.
Object |
AO |
Obs ID |
Seq. No. |
Expos. (ks) |
Observer / Analyst |
Start Date |
Comments & Analysis |
Talks and Publications |
NGC 1068 AGN |
1 |
332 |
700004 |
46.3 |
H. Marshall, P. Ogle, J. Lee |
12/4/00 |
Examine zeroth-order pileup[5/02] |
Paper in submitted[5/02] |
4U 1626-67 XRB |
1 |
104 |
400017 |
40.0 |
N. Schulz |
9/16/00 |
Analysis complete. |
CSR-01-81 |
AR Lac
“Cool” Star |
1 |
6,7,8, 9,10,11 |
20000N: 4,5,6,7,8,9 |
32.5,7.5, 7.5,32.6, 7.3,7.3 |
D. Huenemoerder |
9/11/00- 9/19/00 |
Analysis complete. |
Co-authors comments received. Revised and back to co-authors.[8/02] CSR-01-112 |
Abell 1835 Clust. |
1 |
49896 511 |
800019 |
9.8 127.0 |
M. Wise |
8/25/00 8/26/00 |
Include background subtraction.[7/02] Re-analysis continued w/ ISIS[6/02]; started[5/02] |
Cluster paper in draft[5/02] |
N132D
SNR |
1 |
121, 1828 |
500008 |
22.3 77.6 |
K. Flanagan, D. Dewey |
7/19/00 7/20/00 |
Fe and O line ratios from many regions/features |
CSR-01-10,26, Y2Chandra01 |
TW Hydra “Cool” Star |
1 |
5 |
200003 |
48.3 |
D.Huenemoerder, J. Kastner |
7/18/00 |
Analysis complete. |
CSR-02-02, CSR-01-29 |
NGC 4486, M87 Gal., AGN, Jet |
1 |
241 |
600001 |
38.5 |
M. Wise |
7/17/00 |
Absorption and cooling maps. Examination begun.[6/02] |
|
GX 301-2 XRB |
1 |
103 |
400016 |
40.0 |
N. Schulz |
6/19/00 |
Re-analysis initiated [3/02] |
Draft paper begun [3/02], AAS00 |
NGC 1399
Gal. |
1 |
49898, 240, 2389 |
600214 600000 |
13.2 44.1 14.8 |
M. Wise |
5/8/01 6/15/00 5/8/01 |
Examination begun.[6/02] |
|
Vela X-1 XRB |
1 |
102 |
400015 |
28.4 |
N. Schulz |
4/13/00 |
|
ApJ, 2002, 564, L21 |
MCG –6-30-15 (w/Fabian) AGN
MCG –6-30-15 Cont. AGN |
1 |
433 |
700105 |
128.2 |
H. Marshall, J. Lee |
4/5/00 |
360ks XMM analysis in proc.; XSTAR modeling w/Kallman; Fe UTAs (Ming); LLB edges.[7/02] |
Lee et al 2002, CSR-02-15 [3/02], CSR-01-02 |
NGC 4151 AGN |
1 |
335 |
700007 |
48.0 |
H. Marshall, P. Ogle |
3/5/00 |
|
CSR-00-87 |
PSR B0656+ 14 iNS |
1 |
130 |
500017 |
38.1 |
H. Marshall |
11/28/99 |
LETG/HRC |
Paper accepted, CSR-02-12[3/02] |
PKS 2149-306 IGM, AGN |
1 |
336, 1481 |
700008 |
36.0 54.8 |
H. Marshall |
11/18/99 11/20/99 |
|
CSR-01-67 |
Trapezium
“Hot” Stars |
1 |
3, 4 |
200001 200002 |
50.1 31.3 |
N. Schulz, D. Huenemoerder |
10/31/99 11/24/99 |
Draft papers III and IV continued… Emission measure modeling.[8/02] |
CSR-01-118, CSR-00-89, CSR-00-75 |
4U 1636-53 XRB, ISM |
1 |
105 |
400018 |
29.8 |
N. Schulz, A. Juett |
10/20/99 |
Fit O, Fe, Ne edges.[7/02] |
Santander, AAS00, AAS01 |
PKS 2155-304
AGN, IGM |
1 |
337, 1703, 1705 |
700009 700261 700263 |
39.1 26.2 25.8 |
H. Marshall, T. Fang, J. Lee |
10/20/99 5/31/00 5/31/00 |
HETG and LETG w/ACIS-S |
ApJ Letter in press.[6/02] Paper accepted.[4/02] |
Cyg X-1
XRB |
1 |
107, 1511 |
400020 |
2.5 12.6 |
N. Schulz, H. Marshall, J. Miller |
10/19/99 1/12/00 |
Second paper continuing[5,6/02] Paper…[3/02] |
ApJ, 2002, 564, pp. 941 (CSR-01-57), HEAD00 |
II Peg (HD 224085) “Cool” Star |
1 |
1451 |
200010 |
43.3 |
D. Huenemoerder |
10/17/99 |
Analysis complete. |
CSR-01-50 |
Q0836+7104 IGM, AGN |
1 |
1450, 1802 |
700006 |
61.0 14.1 |
H. Marshall |
10/17/99 8/25/00 |
|
CSR-01-67 |
PKS 0745-191 Clust. |
1 |
510, 1509, 1509 |
800018 |
45.3, 40.4, 39.9 |
M. Wise |
10/14/99 4/25/00 3/4/00 |
Include background subtraction.[7/02] Re-analysis continued w/ ISIS[6/02] |
CSR-02-32[8/02] Responded to referee report.[6/02] ApJ submitted, Hicks et al. [3/02] |
PSR B0833-45 iNS |
1 |
131 |
500018 |
36.1 |
H. Marshall |
10/12/99 |
|
HEAD00 |
NGC 1275 AGN |
1 |
333, 428 |
700005 700201 |
53.2 25.0 |
H. Marshall, P. Ogle |
10/10/99 8/25/00 |
Determined PL spectral slope |
No pubs of note |
E0102
SNR |
1 |
120, 968 |
500007 |
88.2, 49.0 |
K. Flanagan, J. Houck, A. Fredericks, D.Dewey |
9/28/99 10/8/99 |
Allowed plasma region, abundances; shelf and arc fluxes. Created “movie” of plasma vs tau for SPIE.[8/02] |
Final polishing of ApJ paper [3-6/02], CSR-01-10,11,24,25,26, Y2Chandra01 |
Object |
AO |
Obs ID |
Seq. No. |
Expos. (ks) |
Observer / Analyst |
Start Date |
Comments & Analysis |
Talks and Publications |
Cycle 1, end.