Copyright © by

Bülent Kızıltan

2010
Table of Contents

List of Figures ... vi
List of Tables ... viii
Abstract ... ix
Dedication .. xi
Acknowledgments ... xii

I PRELUDE

Preface ... 3

1 INTRODUCTION

1.1 Background ... 8
 1.1.1 Evolution of Millisecond Pulsars ... 8
 1.1.2 Ages of Millisecond Pulsars ... 11
 1.1.3 Masses of Neutron Stars .. 12
1.2 Outline ... 14
 1.2.1 Chapter 2 - Evolution ... 14
 1.2.2 Chapter 3 - Age ... 15
 1.2.3 Chapter 4 - Mass ... 16
 1.2.4 Chapter 5 - Statistics .. 16
 1.2.5 Chapter 6 - Discussion and Conclusions ... 17
5.1 Statistical Approach to Infer Underlying Distributions 84
 5.1.1 Model Formulation ... 85
 5.1.2 MCMC Posterior Simulation Method 86
5.2 Posterior Predictive Distribution 89

IV FINALE

6 DISCUSSION AND CONCLUSIONS 92
 6.1 Do All Millisecond Pulsars Share a Common Heritage? 92
 6.1.1 An Alternative Evolution? 95
 6.2 Millisecond Pulsars Hide Their Age Well 96
 6.2.1 Younger Millisecond Pulsars 99
 6.2.2 Braking Index .. 100
 6.2.3 Ramifications .. 101
 6.3 How Canonical is the Canonical Neutron Star Mass? 103
 6.3.1 Previous Studies .. 103
 6.3.2 Maximum Mass Limit .. 104
 6.3.3 Central Density And The Equation Of State 105
 6.3.4 Evidence For Alternative Evolution And The Formation Of
 Massive Neutron Stars? 106
List of Figures

2.1 Parameters that shape the P-\(\dot{P}\) demographics for millisecond pulsars 20
2.2 K-S probability distribution of the synthetic millisecond pulsars populations 21
2.3 P-\(\dot{P}\) distribution of millisecond pulsars for the standard model ... 23
2.4 Smoothed P-\(\dot{P}\) distribution of millisecond pulsars for the standard model 24
2.5 P-\(\dot{P}\) distribution of millisecond pulsars that have progenitors accreting with \(\dot{m} = \dot{M}_{\text{Edd}}\) ... 25
2.6 P-\(\dot{P}\) distribution of millisecond pulsars that have progenitors accreting with \(\dot{m} = 10^{-1} \times \dot{M}_{\text{Edd}}\) ... 26
2.7 P-\(\dot{P}\) distribution of millisecond pulsars that have progenitors accreting with \(\dot{m} = 10^{-2} \times \dot{M}_{\text{Edd}}\) ... 27
2.8 P-\(\dot{P}\) distribution of millisecond pulsars that have progenitors accreting with \(\dot{m} = 10^{-3} \times \dot{M}_{\text{Edd}}\) ... 28
2.9 Exaggerated effect of the generic power-law dependence of pulsar luminosities on P and \(\dot{P}\) 29
2.10 Comparing the marginal effect of selection biases on the observable millisecond pulsar distribution 30

3.1 Observed distribution of Galactic millisecond pulsars ... 45
3.2 Expected true age distribution of the underlying millisecond pulsar population 46
3.3 P-\(\dot{P}\) and underlying age distribution of millisecond pulsars .. 47
3.4 Effects of secular acceleration on the millisecond pulsar age distribution 48

4.1 Measured masses of radio pulsars .. 59
4.2 Posterior predictive density estimates for the neutron star mass distribution 67
4.3 Likelihood surfaces and posterior densities of model parameters \(\mu\) and \(\sigma\) for the NS mass distribution .. 69
4.4 Plot of the prior predictive NS mass densities under four different prior choices tested for performance .. 70
4.5 Performance of the algorithm for inferring Δ_{peak} in NS-WD systems .. 77
4.6 Performance of the algorithm for inferring Δ_{peak} in DNS systems .. 78
4.7 Performance of the algorithm for inferring Δ_{max} in NS-WD systems .. 79
4.8 Performance of the algorithm for inferring Δ_{max} in DNS systems .. 80
4.9 Autocorrelation plots for consecutive MCMC steps sampling the parameter space of the mean neutron star mass μ and the Gaussian half width σ .. 81
List of Tables

1.1 Accretion and nuclear powered pulsars 9

3.1 Ages of millisecond pulsars with proper motion measurements . 43
3.2 Ages of millisecond pulsars with no proper motion measurements 44

4.1 Neutron star mass measurements in double neutron star systems . 56
4.2 Neutron star mass measurements in neutron star-white dwarf systems 58
Abstract

REASSESSING THE FUNDAMENTALS:
ON THE EVOLUTION, AGES AND MASSES OF
NEUTRON STARS

by

Bülent Kızıltan

The evolution, ages and masses of neutron stars are the fundamental threads that make pulsars accessible to other sub-disciplines of astronomy and physics. A realistic and accurate determination of these indirectly probed features play an important role in understanding a very broad range of astrophysical processes that are, in many cases, not empirically accessible otherwise.

For the majority of pulsars, the only observables are the rotational period (P), and it's derivative (Ṗ) which gives the rate of change in the spin. I start with calculating the joint P-Ṗ distributions of millisecond pulsars for the standard evolutionary model in order to assess whether millisecond pulsars are the unequivocal descendants of low mass X-ray binaries. We show that the P-Ṗ density implied by the standard evolutionary model is inconsistent with observations, which suggests that it is unlikely that millisecond pulsars have evolved from a single coherent progenitor population.

In the absence of constraints from the binary companion or supernova remnant, the standard method for estimating pulsar ages is to infer an age from the rate of spin-down. I parametrically incorporate constraints that arise from binary
evolution and limiting physics to derive a “modified spin-down age” for millisecond pulsars. We show that the standard method can be improved by this approach to achieve age estimates closer to the true age.

Then, I critically review radio pulsar mass measurements and present a detailed examination through which we are able to put stringent constraints on the underlying neutron star mass distribution. For the first time, we are able to analyze a sizable population of neutron star-white dwarf systems in addition to double neutron star systems with a technique that accounts for systematically different measurement errors. We find that neutron stars that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. Neutron stars in double neutron star and neutron star-white dwarf systems show consistent respective peaks at $1.35 \, M_\odot$ and $1.50 \, M_\odot$, which suggest significant mass accretion ($\Delta m \approx 0.15 \, M_\odot$) has occurred during the spin up phase. We find a mass cutoff at $2 \, M_\odot$ for neutron stars with white dwarf companions which establishes a firm lower bound for the maximum neutron star mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for neutron star matter. The lack of truncation close to the maximum mass cutoff suggests that the $2 \, M_\odot$ limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare super-massive neutron stars is possible.
To my family...

...Aileme