NASA’s TESS Shares First Science Image in Hunt to Find New Worlds

NASA Goddard Space Flight Center, Monday, September 17, 2018

NASA's Transiting Exoplanet Survey Satellite, which began science operations in July, has released its first full-frame image using all four of its cameras.

TESS’s cameras, designed and built by MIT’s Lincoln Laboratory in Lexington, Massachusetts, and the MIT Kavli Institute, monitor large swaths of the sky to look for transits. Transits occur when a planet passes in front of its star as viewed from the satellite’s perspective, causing a regular dip in the star’s brightness.

TESS will spend two years monitoring 26 such sectors for 27 days each, covering 85 percent of the sky. During its first year of operations, the satellite will study the 13 sectors making up the southern sky. Then TESS will turn to the 13 sectors of the northern sky to carry out a second year-long survey.

MIT coordinates with Northrop Grumman in Falls Church, Virginia, to schedule science observations. TESS transmits images every 13.7 days, each time it swings closest to Earth. NASA’s Deep Space Network receives and forwards the data to the TESS Payload Operations Center at MIT for initial evaluation and analysis. Full data processing and analysis takes place within the Science Processing and Operations Center pipeline at NASA’s Ames Research Center in Silicon Valley, California, which provides calibrated images and refined light curves that scientists can analyze to find promising exoplanet transit candidates.

TESS builds on the legacy of NASA’s Kepler spacecraft, which also uses transits to find exoplanets. TESS’s target stars are 30 to 300 light-years away and about 30 to 100 times brighter than Kepler’s targets, which are 300 to 3,000 light-years away. The brightness of TESS’ targets make them ideal candidates for follow-up study with spectroscopy, the study of how matter and light interact.

Continue reading

Image caption:The Transiting Exoplanet Survey Satellite (TESS) took this snapshot of the Large Magellanic Cloud (right) and the bright star R Doradus (left) with just a single detector of one of its cameras on Tuesday, Aug. 7. The frame is part of a swath of the southern sky TESS captured in its “first light” science image as part of its initial round of data collection.

Credits: NASA/MIT/TESS