MEMORANDUM
June 8, 2010

To: Jonathan McDowell, SDS Group Leader
From: Glenn E. Allen, SDS
Subject: Adjusting ACIS Event Data to Compensate for the CTI
Revision: 7.0
URL: http://space.mit.edu/CXC/docs/docs.html#cti
File: /nfs/cxc/h2/gea/sds/docs/memos/memo_cti_correction_7.0.tex

1 CTI adjustment

The ACIS instrument teams at PSU and MIT have shown that a significant improvement in the energy resolution of existing ACIS event data can be obtained by compensating for some of the effects of the parallel and serial charge-transfer inefficiencies (CTIs) of the CCDs. To achieve this improvement, charge is added to, and possibly redistributed among, the pixels of an “event island.” While some pixels in the island gain charge, others may lose charge. Yet, the net change for an event is always positive. The algorithm described in section 1.4 is used to compute the CTI-adjusted values of PHAS.

1.1 Input

1. A Level 1 event-data file (acis*evt1.fits, acis*evt1a.fits)
2. A Level 1 mission time-line file (acis*mtl1.fits)
3. A CTI ARD file (acisD*cti*.fits)

1.2 Output

1. An event-data file that includes the keywords CTI_APP, CTI_CORR, CTI_FILE, and MTL_FILE and may contain the CTI adjusted pulse heights PHAS_ADJ and the CTI adjusted values for ENERGY, FLT_GRADE, GRADE,PHA, and PI.

1.3 Parameters

1. infile,f,a,"",,"Input event-data file(s)"
2. outfile,f,a,"",,"Output event-data file"
3. ctifile,f,h,"CALDB",,"CTI ARD file (NONE | none | CALDB | <filename>)"

1 An event island, the quantity named PHAS in a Level 1 event-data file, contains the pulse-height distribution in a 3 pixel \times 3 pixel region centered upon the pixel in which an event is reported. In VFAINT mode, PHAS is a 5 \times 5 array instead of a 3 \times 3, but the CTI adjustment is only applied to the central 3 \times 3 region.
1.4 Processing

The amount of charge added to each event is based on an estimate of the amount of charge that is lost as charge packets are clocked across the charge traps on the ACIS detectors. This estimate depends on (1) the location of the event on the detector, (2) the temperature of the detector, (3) the density of the charge traps, (4) the amount of charge in the charge packet, and (5) the number of traps that have already been filled.

Perform the following tests before processing begins.

- Verify that the infile exists. If it does not, then exit with an error message.
- If apply_cti = yes, then verify that
 - ctifile \neq \text{NONE} or none,
 - the ctifile exists,
 - the ctifile contains a binary table with the columns FRCTRLX, FRCTRLY, PHA, VOLUME_X, and VOLUME_Y, and
 - max_cti_iter and cti_converge are in their valid ranges (e.g. from 1 to 20 and from 0.1 to 1.0, respectively).

If one or more of these conditions are not satisfied, then exit with an error message.

- If apply_cti = yes and ctifile \neq \text{NONE} or none, then verify that
 - the mtlfile exists and
 - the ctifile contains a binary table with the columns TCTIX and TCTIY.

If one or more of these conditions are not satisfied, then exit with an error message.

- If clobber = no, then verify that the outfile does not exist. If it does, then exit with an error message.
- If TIMEDEL is not within the valid range for the specified ctifile, then produce a warning, but continue processing.

If apply_cti = yes, then perform the following steps, in sequence, for each event.\(^2\)

1. Create the real-valued 3 \times 3 arrays \(\Delta_x, \Delta'_x, \Delta_y, \Delta'_y, \text{PHAS}_ADJ, \text{and PHAS}_ADJ'\). Initialize the arrays to zero.

2. Set \text{PHAS}_ADJ = \text{PHAS}.\(^5\) The value of \text{PHAS} remains unchanged to ensure that it is possible to remove the CTI adjustment or to reapply the adjustment if the algorithm or calibration data are modified.

\(^2\)When Catherine Grant tested the PSU CTI-adjustment tool, she found that the median number of iterations required to satisfy a convergence criterion of 0.1 adu is four. No event required more than ten iterations. Therefore, a default maximum of fifteen iterations should be sufficient to determine the values of \text{PHAS}_ADJ.

\(^3\)The default convergence criterion is 0.1 adu because this is the default value used for the PSU CTI-adjustment tool.

\(^4\)The algorithm described in this spec applies only to observations where the DATAMODE = CC33_FAINT, FAINT, FAINT_BIAS, or VFAINT. The CTI adjustment algorithm for GRADED and CC33_GRADED mode observations is described elsewhere.

\(^5\)If DATAMODE = VFAINT, then set \text{PHAS}_ADJ equal to the central 3 \times 3 region of \text{PHAS}. The outer sixteen pixels of the 5 \times 5 array remain unchanged.
3. Perform an iterative loop:

(a) Set

$$PHAS_ADJ' = PHAS_ADJ,$$
$$\Delta_x' = \Delta_x, \text{ and}$$
$$\Delta_y' = \Delta_y.$$

(b) Set the serial CTI adjustment

$$\Delta_{x,0j} = c_{x,0j}s_x\rho_{x,0j}V_{x,0j}^7,$$
$$\Delta_{x,1j} = c_{x,1j}s_x\rho_{x,1j}V_{x,1j} - c_{x,0j}s_x\rho_{x,0j}V_{x,0j}^7 \text{ and}$$
$$\Delta_{x,2j} = c_{x,2j}s_x\rho_{x,2j}V_{x,2j} - c_{x,1j}s_x\rho_{x,1j}V_{x,1j}^7,$$

for every element \(j \) where

- \(\Delta_{x,ij} \) is an estimate of the amount of charge that should be added to pixel \((i, j)\) to compensate for the effects of serial CTI,
- the indices \(i \) and \(j \) of the \(3 \times 3 \) array are in the range from 0 to 2 and are associated with the coordinates \(CHIPX \) and \(CHIPY \), respectively (see sec. 1.5 and Fig. 1),
- the temperature-dependent scaling factor

$$s_x = 1 + T\text{TIX}(T - 153.45 \text{ K}),$$

- \(T\text{TIX} \), which depends on the \(CCD_ID \) of the event, is the fractional change in the serial trap density per degree C and is obtained from the column named \(T\text{TIX} \) in the \(ctifile \),
- the time-dependent focal-plane temperature

$$T = \left(\frac{t' - t'_k}{t_{k+1}' - t_k'} \right) (FP_{_TEMP_{k+1}} - FP_{_TEMP_k}) + FP_{_TEMP_k},$$

where

- \(t' = t + TIME_\text{evt} (TIME_\text{PIXR}_{_\text{evt}} - 0.5) \),
- \(t \) is the \(TIME \) of the event,
- \(TIME_\text{evt} \) and \(TIME_\text{PIXR}_{_\text{evt}} \) are the names of keywords in the \(infile \),
- \(t_k' \) and \(t_{k+1}' \) satisfy the condition \(t_k' \leq t' < t_{k+1}' \),
- \(t_k' = TIME_k + TIME_\text{mlt} (TIME_\text{PIXR}_{_\text{mlt}} - 0.5) \),
- \(t_{k+1}' = TIME_{k+1} + TIME_\text{mlt} (TIME_\text{PIXR}_{_\text{mlt}} - 0.5) \),
- \(TIME_k \) and \(TIME_{k+1} \) are elements of the column \(TIME \) in the \(mtlfile \),
- \(TIME_\text{mlt} \) and \(TIME_\text{PIXR}_{_\text{mlt}} \) are the names of keywords in the \(mtlfile \),
- \(FP_{_TEMP_k} \) and \(FP_{_TEMP_{k+1}} \) are the elements of the column \(FP_{_TEMP} \) in the \(mtlfile \) that are associated with the times \(TIME_k \) and \(TIME_{k+1} \), respectively,
- \(\rho_{x,ij} \) is the position-dependent serial trap density at the location \((CHIPX + i - 2, CHIPY + j - 2)\) in the map associated with the \(CCD_ID \) of the event (see sec. 1.5 and Fig. 1),
- the pulse-height dependent “volume” occupied by a packet of charge

$$V_{x,ij} = \left(\frac{PHAS_{ij} + \Delta_{x,ij}' + \Delta_{y,ij}' - PHA_l}{PHA_{l+1} - PHA_l} \right) (VOLUME_{x_{l+1}} - VOLUME_{x_l}) + VOLUME_{x_l}^7,$$

- If the \(ctifile \) does not contain a serial CTI trap-density map for the CCD on which the event occurred, then set \(\Delta_x = 0 \) and skip item 3b.

- If the \(ctifile \) contains a serial CTI trap-density map for the CCD on which the event occurred, then replace the indices \(0j \), \(1j \), and \(2j \) with \(2j \), \(1j \), and \(0j \), respectively.

- If \(mtlfile = NONE \) or \(none \), then set \(s_x = 1 \).

- If \(t' < t_0' \), then \(T = FP_{_TEMP_0} \). If \(t_{N-1}' < t' \), where \(N \) is the number of elements in the vector \(FP_{_TEMP} \), then \(T = FP_{_TEMP_N-1} \).
• PHA_i and PHA_{i+1}, which depend on the CCD_ID of the event, are the elements of the column PHA in the cfile that satisfy the condition PHA_i ≤ PHAS_{0j} + Δ'_{Φ,0j} + Δ'_{Y,0j} < PHA_{i+1}.¹⁰

• VOLUME_L and VOLUME_X, which depend on the CCD_ID of the event, are the elements of the column VOLUME in the cfile that are associated with PHA_i and PHA_{i+1}, respectively,

• The pulse-height dependent constant <csub>c</csub>_{x,0j} is set as follows:⁷

<table>
<thead>
<tr>
<th>c<sub>x,0j</sub></th>
<th>Condition<sup>11</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(PHAS<sub>0j</sub> + Δ'<sub>Φ,0j</sub> + Δ'<sub>Y,0j</sub>) < sphresh</td>
</tr>
<tr>
<td>1</td>
<td>sphresh ≤ (PHAS<sub>0j</sub> + Δ'<sub>Φ,0j</sub> + Δ'<sub>Y,0j</sub>)</td>
</tr>
</tbody>
</table>

• sphresh, a parameter of the tool acis_process_events, is the split threshold,

• The pulse-height dependent constants <csub>c</csub>_{x,1j} and <csub>c</csub>_{x,2j} are set as follows:⁷

<table>
<thead>
<tr>
<th>c<sub>x,1j</sub></th>
<th>c<sub>x,2j</sub></th>
<th>Condition<sup>11</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(PHAS<sub>1j</sub> + Δ'<sub>Φ,1j</sub> + Δ'<sub>Y,1j</sub>) < sphresh</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(PHAS<sub>1j</sub> + Δ'<sub>Φ,1j</sub> + Δ'<sub>Y,1j</sub>) < sphresh ≤ (PHAS<sub>1j</sub> + Δ'<sub>Φ,1j</sub> + Δ'<sub>Y,1j</sub>)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>sphresh ≤ (PHAS<sub>1j</sub> + Δ'<sub>Φ,0j</sub> + Δ'<sub>Y,0j</sub>) ≤ (PHAS<sub>1j</sub> + Δ'<sub>Φ,1j</sub> + Δ'<sub>Y,1j</sub>)</td>
</tr>
</tbody>
</table>

• FRCTRLX, which depends on the CCD_ID of the event, is the fraction of the charge that is “trailed” one pixel in the serial read-out direction and is obtained from the column named FRCTRLX in the cfile,

• The pulse-height dependent constants <csub>c</csub>_{x,1j} and <csub>c</csub>_{x,2j} are set as follows:⁷

<table>
<thead>
<tr>
<th>c<sub>x,1j</sub></th>
<th>c<sub>x,2j</sub></th>
<th>Condition<sup>11</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(PHAS<sub>2j</sub> + Δ'<sub>Φ,2j</sub> + Δ'<sub>Y,2j</sub>) < sphresh</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(PHAS<sub>2j</sub> + Δ'<sub>Φ,2j</sub> + Δ'<sub>Y,2j</sub>) < sphresh ≤ (PHAS<sub>2j</sub> + Δ'<sub>Φ,2j</sub> + Δ'<sub>Y,2j</sub>)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>sphresh ≤ (PHAS<sub>2j</sub> + Δ'<sub>Φ,1j</sub> + Δ'<sub>Y,1j</sub>) ≤ (PHAS<sub>2j</sub> + Δ'<sub>Φ,2j</sub> + Δ'<sub>Y,2j</sub>)</td>
</tr>
</tbody>
</table>

(c) Set the parallel CTI adjustment¹⁴

\[
\begin{align*}
\Delta_y,0j &= c_y,0j s_y \rho_y,0j V_y,0j, \\
\Delta_y,1j &= c_y,1j s_y \rho_y,1j V_y,1j - c_y,0j s_y \rho_y,0j V_y,0j, \text{ and} \\
\Delta_y,2j &= c_y,2j s_y \rho_y,2j V_y,2j - c_y,1j s_y \rho_y,1j V_y,1j,
\end{align*}
\]

for every element <i,j> where

- \(\Delta_y,ij \) is an estimate of the amount of charge that should be added to pixel \((i,j) \) to compensate for the effects of parallel CTI,
- the temperature-dependent scaling factor¹⁵

\[
s_y = 1 + \text{TCTIY} (T - 153.45 \text{ K}),
\]

¹⁰ If PHAS_{0j} + Δ'_{Φ,0j} + Δ'_{Y,0j} < PHA₀, then \(l = 0 \). If PHA_{N-1} < PHAS_{0j} + Δ'_{Φ,0j} + Δ'_{Y,0j}, where \(N = \text{NPOINTS} \), the number of elements in the vector PHA, then \(l = N - 2 \).

¹¹ While the code should use PHAS_{0j} instead of (PHAS_{0j} + Δ'_{Φ,0j} + Δ'_{Y,0j}) for the comparisons to the sphresh, changing the code might require recalibration.

¹² If the NODE_ID of the event is 1, 2, or 3 instead of 0, then use 512, 513, and 1024 instead of 1 for the condition on CHIPX.

¹³ If the NODE_ID of the event is 1, 2, or 3 instead of 0, then use 512, 768, and 769 instead of 256 for the condition on CHIPX.

¹⁴ If the cfile does not contain a parallel CTI trap-density map for the CCD on which the event occurred, then set \(\Delta_y = 0 \) and skip item 3c.

¹⁵ If mfile = NONE or none, then set \(s_y = 1 \).
• TCTIY, which depends on the CCD_ID of the event, is the fractional change in the parallel trap density per degree C and is obtained from the column named TCTIY in the ctifile.
• ρ_y,ij is the position-dependent parallel trap density at the location (CHIPX+i−2, CHIPY+j−2) in the map associated with the CCD_ID of the event (see sec. 1.5 and Fig. 1),\(^7\)
• the pulse-height dependent “volume” occupied by a packet of charge

\[
V_{y,ij} = \left(\frac{\text{PHAS}_{ij} + \Delta_{x,ij} + \Delta'_{y,ij} - \text{PHAs}_m}{\text{PHAs}_{m+1} - \text{PHAs}_m} \right) (\text{VOLUME}_{Y,m+1} - \text{VOLUME}_{Y,m}) + \text{VOLUME}_{Y,m}, \quad \text{VOLUME}_{Y,m+1}, \quad 7 \quad (14)
\]

• PHAs_m and PHAs_{m+1}, which depend on the CCD_ID of the event, are the elements of the column PHAs in the ctifile that satisfy the condition PHAs_m ≤ PHAs_{ij} + Δ_x,ij + Δ'_{y,ij} < PHAs_{m+1},\(^16\)
• VOLUME_{Y,m} and VOLUME_{Y,m+1}, which depend on the CCD_ID of the event, are the elements of the column VOLUME_Y in the ctifile that are associated with PHAs_m and PHAs_{m+1}, respectively,
• The pulse-height dependent constant c_y,0;j is set as follows: \(^7\)

<table>
<thead>
<tr>
<th>c_y,0;j</th>
<th>Condition (^17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(PHAS_{0,j} + Δ_x,0;j + Δ'_{y,0;j}) < spthresh</td>
</tr>
<tr>
<td>1</td>
<td>spthresh ≤ (PHAS_{0,j} + Δ_x,0;j + Δ'_{y,0;j})</td>
</tr>
</tbody>
</table>

• The pulse-height dependent constants c_y,1;j and c_y,1;j are set as follows: \(^7\)

<table>
<thead>
<tr>
<th>c_y,1;j</th>
<th>c_y,2;j</th>
<th>Condition (^17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(PHAS_{1,j} + Δ_x,1;j + Δ'_{y,1;j}) < spthresh</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(PHAS_{0,j} + Δ_x,0;j + Δ'{y,0;j}) < spthresh ≤ (PHAS{1,j} + Δ_x,1;j + Δ'_{y,1;j})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>spthresh ≤ (PHAS_{0,j} + Δ_x,0;j + Δ'{y,0;j}) ≤ (PHAS{1,j} + Δ_x,1;j + Δ'_{y,1;j})</td>
</tr>
</tbody>
</table>

FRCTRLY FRCTRLY spthresh ≤ (PHAS_{1,j} + Δ_x,1;j + Δ'_{y,1;j}) < (PHAS_{0,j} + Δ_x,0;j + Δ'_{y,0;j})

• FRCTRLY, which depends on the CCD_ID of the event, is the fraction of the charge that is “trailed” one pixel in the parallel read-out direction and is obtained from the column named FRCTRLY in the ctifile,
• The pulse-height dependent constants c_y,1;j and c_y,2;j are set as follows: \(^7\)

<table>
<thead>
<tr>
<th>c_y,1;j</th>
<th>c_y,2;j</th>
<th>Condition (^17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(PHAS_{2,j} + Δ_x,2;j + Δ'_{y,2;j}) < spthresh</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(PHAS_{1,j} + Δ_x,1;j + Δ'{y,1;j}) < spthresh ≤ (PHAS{2,j} + Δ_x,2;j + Δ'_{y,2;j})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>spthresh ≤ (PHAS_{1,j} + Δ_x,1;j + Δ'{y,1;j}) ≤ (PHAS{2,j} + Δ_x,2;j + Δ'_{y,2;j})</td>
</tr>
</tbody>
</table>

FRCTRLY FRCTRLY spthresh ≤ (PHAS_{2,j} + Δ_x,2;j + Δ'_{y,2;j}) < (PHAS_{1,j} + Δ_x,1;j + Δ'_{y,1;j})

(d) Set the CTI-adjusted pulse heights

\[
\text{PHAS}_{\text{ADJ}} = \text{PHAS} + \Delta_x + \Delta_y. \quad (15)
\]

(e) If

\[
N_{\text{iter}} < \max_{\text{cti.iter}} \text{ and } \quad (16)
\]

\[
| \text{PHAS}_{\text{ADJ}_{ij}} - \text{PHAS}_{\text{ADJ}'_{ij}} | \geq \text{cti.converge} \quad (17)
\]

for one or more of the nine pixels, where \(N_{\text{iter}} \) is the number of iterations for the event, then perform another iteration by repeating steps 3a through 3d.

If

\[
N_{\text{iter}} \leq \max_{\text{cti.iter}} \text{ and } \quad (18)
\]

\[
| \text{PHAS}_{\text{ADJ}_{ij}} - \text{PHAS}_{\text{ADJ}'_{ij}} | < \text{cti.converge} \quad (19)
\]

for all nine pixels, then stop iterating for the event. The computation of the CTI adjustment is done. Based on the conditions shown in Tables 1 and 2, set STATUS bit 20 (of 0–31) equal to zero

\(^{16}\) If PHAS_{ij} + Δ_x,ij + Δ'_{y,ij} < PHA_0, then \(m = 0 \). If PHA_{N−1} < PHAS_{ij} + Δ_x,ij + Δ'_{y,ij}, where \(N = \text{NPOINTS} \), the number of elements in the vector PHA, then \(m = N − 2 \).

\(^{17}\) While the code should use PHAS_{ij} instead of (PHAS_{ij} + Δ_x,ij + Δ'_{y,ij}) for the comparisons to the spthresh, changing the code might require recalibration.
Table 1. Input Conditions

<table>
<thead>
<tr>
<th>Case</th>
<th>apply_citi</th>
<th>doevtgrade</th>
<th>calculate_pi</th>
<th>CTI_CORR</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>F</td>
<td>default in pipeline</td>
</tr>
<tr>
<td>2</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>T</td>
<td>default for reprocessing</td>
</tr>
<tr>
<td>3</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>T</td>
<td>remove adjustment</td>
</tr>
<tr>
<td>11</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

to indicate that the adjustment converged for the event. Set the values of the array PHAS_ADJ equal the values from the last iteration.

If

\[N_{\text{iter}} \geq \max_{i=1}^{\text{max}} N_{\text{iter}} \quad \text{and} \quad \left| \text{PHAS}_{\text{ADJ}}_{ij} - \text{PHAS}_{\text{ADJ}}'_{ij} \right| \geq cti_{\text{converge}} \]

for one or more of the nine pixels, then stop iterating. The computation of the CTI adjustment has not converged. Based on the conditions shown in Tables 1 and 2, set STATUS bit 20 (of 0–31) equal to one to indicate that the adjustment did not converge for the event. Set the values of the array PHAS_ADJ equal the values from the last iteration.

4. If the parameter eventdef includes "$\text{s:phas}"$, then write the unadjusted values of PHAS to the outfile.

5. If the parameter eventdef includes "$\text{f:phasadj}"$, then write the CTI adjusted values of PHAS_ADJ to the outfile.\(^5\)

6. Based on the conditions shown in Table 1, create or update the keywords CTI_CORR and CTIFILE in the outfile as shown in Table 2.

7. Create or update the keyword MTLFILE in the outfile.

8. Create or update the keyword CTI_APP in the outfile. CTI_APP is a ten character string with one character for each CCD. If no CTI adjustment is performed for a CCD, then the character for the CCD is N. If only a parallel CTI adjustment is performed, then the character is P. If both serial and a parallel CTI adjustments are performed, then the character is B. For example, the default at present is CTI_APP = PPPPPBBBPP.

9. Based on the conditions shown in Table 1, compute the values of PHA, ENERGY, PI, FLTGRADE, and GRADE as shown in Table 2.

1.5 CTI ARD file

The CTI ARD file in the CALDB has the following structure.
Table 2. Output

<table>
<thead>
<tr>
<th>Case</th>
<th>Column</th>
<th>Column</th>
<th>Column</th>
<th>Column</th>
<th>Column</th>
<th>STATUS</th>
<th>Keyword</th>
<th>Keyword</th>
<th>Keyword</th>
<th>Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHAa</td>
<td>ENERGY</td>
<td>PI</td>
<td>FLTGRADEa</td>
<td>GRADE</td>
<td>bit 20b</td>
<td>CTI CORR</td>
<td>CTIFILEc</td>
<td>GAINFILEd</td>
<td>MTLFILEe</td>
</tr>
<tr>
<td>1</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>set</td>
<td>T</td>
<td>ctifile</td>
<td>gainfile</td>
<td>mtlfile</td>
</tr>
<tr>
<td>2</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>set</td>
<td>T</td>
<td>ctifile</td>
<td>gainfile</td>
<td>mtlfile</td>
</tr>
<tr>
<td>3</td>
<td>compute</td>
<td>copyf</td>
<td>copy</td>
<td>compute</td>
<td>compute</td>
<td>set</td>
<td>T</td>
<td>ctifile</td>
<td>copy</td>
<td>mtlfile</td>
</tr>
<tr>
<td>4</td>
<td>compute</td>
<td>copy</td>
<td>copy</td>
<td>compute</td>
<td>compute</td>
<td>set</td>
<td>T</td>
<td>ctifile</td>
<td>copy</td>
<td>mtlfile</td>
</tr>
<tr>
<td>5</td>
<td>copy</td>
<td>compute</td>
<td>compute</td>
<td>copy</td>
<td>copy</td>
<td>unset</td>
<td>F</td>
<td>NONE</td>
<td>gainfile</td>
<td>NONE</td>
</tr>
<tr>
<td>6</td>
<td>copy</td>
<td>compute</td>
<td>compute</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>T</td>
<td>copy</td>
<td>gainfile</td>
<td>copy</td>
</tr>
<tr>
<td>7</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>unset</td>
<td>F</td>
<td>NONE</td>
<td>copy</td>
<td>NONE</td>
</tr>
<tr>
<td>8</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>T</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
</tr>
<tr>
<td>9</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>F</td>
<td>NONE</td>
<td>gainfile</td>
<td>NONE</td>
</tr>
<tr>
<td>10</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>F</td>
<td>NONE</td>
<td>copy</td>
<td>NONE</td>
</tr>
<tr>
<td>11</td>
<td>compute</td>
<td>copy</td>
<td>copy</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>F</td>
<td>NONE</td>
<td>copy</td>
<td>NONE</td>
</tr>
<tr>
<td>12</td>
<td>compute</td>
<td>copy</td>
<td>copy</td>
<td>compute</td>
<td>compute</td>
<td>compute</td>
<td>F</td>
<td>NONE</td>
<td>copy</td>
<td>NONE</td>
</tr>
<tr>
<td>13</td>
<td>copy</td>
<td>compute</td>
<td>compute</td>
<td>copy</td>
<td>copy</td>
<td>compute</td>
<td>F</td>
<td>NONE</td>
<td>gainfile</td>
<td>NONE</td>
</tr>
<tr>
<td>14</td>
<td>copy</td>
<td>compute</td>
<td>compute</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>T</td>
<td>copy</td>
<td>gainfile</td>
<td>copy</td>
</tr>
<tr>
<td>15</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>compute</td>
<td>F</td>
<td>NONE</td>
<td>copy</td>
<td>NONE</td>
</tr>
<tr>
<td>16</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
<td>T</td>
<td>copy</td>
<td>copy</td>
<td>copy</td>
</tr>
</tbody>
</table>

a If apply$_cti = \text{yes}$, then PHA and FLTGRADE are computed using PHAS$_ADJ$. If apply$_cti = \text{no}$, then PHA and FLTGRADE are computed using PHAS.

b If apply$_cti = \text{yes}$, then STATUS bit 20 (of 0–31) is set to one for an event only if the CTI adjustment for the event did not converge.

c The name of the CTI ARD file used to perform the CTI adjustments.

d The name of the gain ARD file used to compute ENERGY from PHA.

e The name of the mission time-line file used to compute the focal-plane temperature.

f Copied from the infile to the outfile.

1.5.1 Binary table

The first HDU after the primary HDU includes a binary table with the columns

- CCD_ID,
- CHIPX_Lo,
- CHIPX_HI,
- CHIPY_Lo,
- CHIPY_HI,
- NPOINTS,
- PHA,
- VOLUME_X,
- VOLUME_Y,
- FRCTRLX,
- FRCTRLY,
- VFRTRLX,
- VFRTRLY,
- TCTIX, and
- TCTIY.
Figure 1: Left: The elements \((i, j)\) of a \(3 \times 3\) pulse-height array. Right: The associated chip coordinates for an event that occurred at \((\text{CHIPX}, \text{CHIPY}) = (200, 300)\). Since the \(1024 \times 1024\) element trap-density maps have indices that run from 0 to 1023, the trap density associated with element \((i, j)\) of the pulse-height array for an event that occurred at \((\text{CHIPX}, \text{CHIPY})\) is the density at the location \((\text{CHIPX} + i - 2, \text{CHIPY} + j - 2)\).

The columns \texttt{CCD_ID}, \texttt{CHIPX_LO}, \texttt{CHIPX_HI}, \texttt{CHIPY_LO} and \texttt{CHIPY_HI} define a complete set of spatially-separate regions for the ten CCDs. At present, each row of the table corresponds to one CCD and includes the vectors \texttt{PHA}, \texttt{VOLUME_X}, and \texttt{VOLUME_Y}. Each vector has \texttt{NPOINTS} elements. The use of these vectors, and the scalars \texttt{FRCTRLX}, \texttt{FRCTRLY}, \texttt{TCTIX}, and \texttt{TCTIY} are described in section 1.4. The scalars \texttt{VFTRLX} and \texttt{VFTRLY} are used by the algorithm associated with the parameter \texttt{check_vf_pha}, which is described elsewhere.

1.5.2 Trap-density maps

There are several HDUs following the binary table. Each one contains a parallel or serial trap-density map for a particular CCD. The keywords \texttt{CCD_ID} and \texttt{TRAN_DIR} specify the CCD (0–9) and the clocking direction (\texttt{PARALLEL} or \texttt{SERIAL}), respectively. The maps have indices \(i\) and \(j\) that each range from 0 to 1023. The value at \((i, j)\) represents the number of parallel or serial traps across which an event at \((\text{CHIPX}, \text{CHIPY}) = (i+1, j+1)\) is clocked as it is read out. To save disk space, the values are stored as two-byte integers. The real-valued trap density \(\rho_{ij} = \texttt{BZERO} + \texttt{BSCALE} \times M_{ij}\), where \texttt{BZERO} and \texttt{BScale} are keywords and \(M_{ij}\) is the integer value in the map for the element \((i, j)\).